19,414 research outputs found

    The choice among non-callable bonds and make whole, claw back and otherwise ordinary callable bonds

    Get PDF
    This paper seeks to explain determinates of the choice and the pricing of various types of callable and non-callable bonds. We find that the popularity of different types of callable and non-callable bonds is significantly related to the economic environment. In addition, the popularity of claw back bonds appear to be driven by agency considerations, make whole bonds by the debt overhang problem, ordinary callable bonds by the need by banks to deal with interest rate changes and non-callable bonds by the need to raise funds as cheaply as possible. All else equal, firms pay a higher offer spread for the flexibility to call a claw back bond early via a new share offering whereas issuers of make whole bonds are rewarded with a lower offer spread for restricting calls to circumstances that does not expropriate bondholder wealth

    Activation of Long Descending Propriospinal Neurons in Cat Spinal Cord

    Get PDF
    Isolated mammalian spinal cord has been shown capable of generating locomotor activity. Propriospinal systems assumed to coordinate fore- and hindlimb activity are poorly understood. This study characterizes the long descending propriospinal (LDP) neurons in terms of the location of the somas and their peripheral inputs by direct neuronal recording. Anatomical studies using axonal retrograde transport of horseradish peroxidase from the lumbar to the cervical spinal cord as a tracer first described these neurons. Two hundred and thirty-one LDP neurons were identified in electrophysiological experiments. Of these, 123 responded to natural stimulation, and about 50% of the others were activated only by electrical stimulation. The majority of cells were located in laminae VII and VIII in agreement with anatomical data. The most effective stimuli were mechanical stimulation of skin, deep pressure to subcutaneous tissues, and paw joint movement. Bot excitatory and inhibitory responses were observed

    Development of Ground-testable Phase Fresnel Lenses in Silicon

    Full text link
    Diffractive/refractive optics, such as Phase Fresnel Lenses (PFL's), offer the potential to achieve excellent imaging performance in the x-ray and gamma-ray photon regimes. In principle, the angular resolution obtained with these devices can be diffraction limited. Furthermore, improvements in signal sensitivity can be achieved as virtually the entire flux incident on a lens can be concentrated onto a small detector area. In order to verify experimentally the imaging performance, we have fabricated PFL's in silicon using gray-scale lithography to produce the required Fresnel profile. These devices are to be evaluated in the recently constructed 600-meter x-ray interferometry testbed at NASA/GSFC. Profile measurements of the Fresnel structures in fabricated PFL's have been performed and have been used to obtain initial characterization of the expected PFL imaging efficiencies.Comment: Presented at GammaWave05: "Focusing Telescopes in Nuclear Astrophysics", Bonifacio, Corsica, September 2005, to be published in Experimental Astronomy, 8 pages, 3 figure

    Perceptions of Positive Relationship Traits in Gay and Lesbian Couples

    Get PDF
    The following study examined perceptions of positive traits in homosexual relationships. Students (n = 216) and professional counselors (n = 96) read one of three variations of a transcript of a couple’s counseling session that were identical in all aspects except for the names of the couple members and associated pronouns, implying sexual orientation (either John and Amy, Amy and Jennifer, or John and David). Participants then rated the couple’s level of commitment, satisfaction, investment, and closeness. Surprisingly, the student group perceived no differences between the couples, but the counselor group perceived the gay and lesbian couples as having higher levels of the positive relationship traits. Implications regarding counselor bias are discussed

    External loading determines specific ECM genes regulation

    Get PDF
    Bio artificial matrices embedded with cells are simulated in bioreactors to facilitate ECM production. As cells attach, they develop forces, which are dependent on cell type and matrix stiffness. External forces (i.e strain), however, are critical for tissue homeostasis and elicit specific cellular responses, such as gene expression and protein production. Collagen Type I is a widely used scaffold in Tissue engineering. The aim of this study was to study the mechanical and molecular responses, of different cell types to increasing collagen substrate stiffness

    Populations of Pear Thrips, \u3ci\u3eTaeniothrips Inconsequens\u3c/i\u3e (Thysanoptera: Thripidae) in Sugar Maple Stands in Vermont: 1989-2005

    Get PDF
    Development of an effective IPM strategy for pear thrips, Taeniothrips inconsequens (Uzel) (Thysanoptera: Thripidae), a pest of sugar maple, Acer saccharum Marshall, demands an understanding of their population fluctuations over time. Pear thrips populations were monitored using a standardized soil sampling method every fall from 1989 – 2005 in 14 counties of Vermont (U.S.). Data from individual sites were combined into north, central and south regions. High numbers of thrips emerged from soil sampled in 1989, 1990, 1993 and 2001, particularly in the north region (Washington, Lamoille, and Franklin counties). The central and south regions had lower pear thrips populations over all years. These results provide, for the first time, fundamental knowledge of pear thrips populations across a wide geographical area of Vermont and will assist in the design of suitable control strategies for pear thrips in the future

    Provenance and geochemistry of exotic clasts in conglomerates of the Oligocene Torehina Formation, Coromandel Peninsula, New Zealand

    Get PDF
    Non-marine pebble to cobble conglomerates of the lower Torehina Formation (Oligocene) crop out along western Coromandel Peninsula and overlie, with strong angular discordance, continental-margin metasedimentary rocks (Manaia Hill Group) of Mesozoic (Late Jurassic to ?Early Cretaceous) age. The conglomerates contain provenance information that identifies a pre-Oligocene depositional history obscured by the unconformable juxtaposition of these Tertiary and Mesozoic strata. Most clasts in the lower Torehina Formation are visually similar to local bedrock lithologies, including metamorphosed sandstones and argillites, but are kaolinitic and contain more detrital and authigenic chert, quartz, and potash feldspar. Local derivation of these clasts seems unlikely. By comparing geochemical ratios with those defined for continental margin sandstones, and well characterised New Zealand tectonic terranes, we interpret the majority of clasts in the lower Torehina Formation to have been derived from a dissected orogen, with mixtures of felsic and volcanogenic-derived sediment. The most likely sources are the Waipapa and Torlesse Terranes. The remaining 20–30% of the clasts in the lower Torehina Formation were originally friable, are coarse grained, and appear to be lithologically exotic relative to known metamorphosed sandstones in basement terrane sources on North Island. Some clasts contain coal laminae and particles, and all contain detrital kaolinite as lithic fragments and matrix. Such characteristics imply a non-marine to marginal-marine source containing sediment derived from strongly weathered granite or granodiorite. Mechanical fragility implies a likely proximal, easily erodible source. We propose that this group of clasts was derived from an Upper Cretaceous sedimentary cover, either part of a locally developed basin fill or part of a once regionally extensive cover on North Island. Either case defines a more widely distributed Cretaceous source than found today

    Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    Get PDF
    Diffusion tensor imaging (DTI) is a promising biomarker of spinal cord injury (SCI). In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE) have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE) approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV) excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI. Overall, the results and optimizations describe a protocol that mitigates several difficulties with DTI of the spinal cord. Detection of acute axonal damage in the injured or diseased spinal cord will benefit the optimized filter-probe diffusion MRI protocol outlined here

    Anomalously large capacitance of a plane capacitor with a two-dimensional electron gas

    Full text link
    In electronic devices where a two-dimensional electron gas (2DEG) comprises one or both sides of a plane capacitor, the resulting capacitance CC can be larger than the "geometric capacitance" CgC_g determined by the physical separation dd between electrodes. This larger capacitance is known to result from the Coulomb correlations between individual electrons within the low density 2DEG, which lead to a negative thermodynamic density of states (negative compressibility). Experiments on such systems generally operate in the regime where the average spacing between electrons n1/2n^{-1/2} in the 2DEG is smaller than dd, and these experiments observe C>CgC > C_g by only a few percent. A recent experiment [1], however, has observed CC larger than CgC_g by almost 40% while operating in the regime nd2<<1nd^2 << 1. In this paper we argue that at nd2<<1nd^2 << 1 correlations between the electronic charge of opposite electrodes become important. We develop a theory of the capacitance for the full range of nd2nd^2. We show that, in the absence of disorder, the capacitance can be 4d/a4d/a times larger than the geometric value, where a<<da << d is the electron Bohr radius. Our results compare favorably with the experiment of Ref. [1] without the use of adjustable parameters.Comment: 8 pages, 6 figures; revised discussion of the zero density limit; some typos fixe

    The problem of shot selection in basketball

    Get PDF
    In basketball, every time the offense produces a shot opportunity the player with the ball must decide whether the shot is worth taking. In this paper, I explore the question of when a team should shoot and when they should pass up the shot by considering a simple theoretical model of the shot selection process, in which the quality of shot opportunities generated by the offense is assumed to fall randomly within a uniform distribution. I derive an answer to the question "how likely must the shot be to go in before the player should take it?", and show that this "lower cutoff" for shot quality ff depends crucially on the number nn of shot opportunities remaining (say, before the shot clock expires), with larger nn demanding that only higher-quality shots should be taken. The function f(n)f(n) is also derived in the presence of a finite turnover rate and used to predict the shooting rate of an optimal-shooting team as a function of time. This prediction is compared to observed shooting rates from the National Basketball Association (NBA), and the comparison suggests that NBA players tend to wait too long before shooting and undervalue the probability of committing a turnover.Comment: 7 pages, 2 figures; comparison to NBA data adde
    corecore