459 research outputs found
Boundary conditions and Berry phase in magnetic nanostructures
The effect of micromagnetic boundary conditions on the Berry curvature and topological Hall effect in granular nanostructures is investi- gated by model calculations. Both free surfaces and grain boundaries between interacting particles or grains affect the spin structure. The Dzyaloshinskii-Moriya interactions yield corrections to the Erdmann-Weierstrass boundary conditions, but the Berry curvature remains an exclusive functional of the local spin structure, which greatly simplifies the treatment of nanostructures. An explicit example is a model nanostructure with cylindrical symmetry whose spin structure is described by Bessel function and which yields a mean-field-type Hall-effect contribution that can be related to magnetic-force-microscopy images
Magnetism of Ta Dichalcogenide Monolayers Tuned by Strain and Hydrogenation
The effects of strain and hydrogenation on the electronic and magnetic
properties of monolayers of Ta based dichalcogenides (TaX2; X = S, Se, Te) are
investigated using density-functional theo-ry. We predict a complex scenario of
strain-dependent magnetic phase transitions involving par-amagnetic,
ferromagnetic, and modulated antiferromagnetic states. Covering one of the two
chalcogenide surfaces with hydrogen switches the antiferromagnetic/nonmagnetic
TaX2 mono-layers to a semiconductor. Our research opens new pathways towards
the manipulation of mag-netic properties for future optoelectronics and
spintronics applications.Comment: 13 pages, 5 figure
Structural and magnetic properties of Pr-alloyed MnBi nanostructures
The structural and magnetic properties of Pr-alloyed MnBi (short MnBi-Pr)
nanostructures with a range of Pr concentrations have been investigated. The
nanostructures include thin films having Pr concentrations 0, 2, 3, 5 and 9
atomic percent and melt-spun ribbons having Pr concentrations 0, 2, 4 and 6
percent respectively. Addition of Pr into the MnBi lattice has produced a
significant change in the magnetic properties of these nanostructures including
an increase in coercivity and structural phase transition temperature, and a
decrease in saturation magnetization and anisotropy energy. The highest value
of coercivity measured in the films is 23 kOe and in the ribbons is 5.6 kOe.
The observed magnetic properties are explained as the consequences of competing
ferromagnetic and antiferromagnetic interactions
Simulation of alnico coercivity
Micromagnetic simulations of alnico show substantial deviations from
Stoner-Wohlfarth behavior due to the unique size and spatial distribution of
the rod-like Fe-Co phase formed during spinodal decomposition in an external
magnetic field. The maximum coercivity is limited by single-rod effects,
especially deviations from ellipsoidal shape, and by interactions between the
rods. Both the exchange interaction between connected rods and magnetostatic
interaction between rods are considered, and the results of our calculations
show good agreement with recent experiments. Unlike systems dominated by
magnetocrystalline anisotropy, coercivity in alnico is highly dependent on
size, shape, and geometric distribution of the Fe-Co phase, all factors that
can be tuned with appropriate chemistry and thermal-magnetic annealing
Vortex polarity switching by a spin--polarized current
The spin-transfer effect is investigated for the vortex state of a magnetic
nanodot. A spin current is shown to act similarly to an effective magnetic
field perpendicular to the nanodot. Then a vortex with magnetization (polarity)
parallel to the current polarization is energetically favorable. Following a
simple energy analysis and using direct spin--lattice simulations, we predict
the polarity switching of a vortex. For magnetic storage devices, an electric
current is more effective to switch the polarity of a vortex in a nanodot than
the magnetic field
A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques
We present a circuit model to describe the electron transport through a
domain wall in a ferromagnetic nanowire. The domain wall is treated as a
coherent 4-terminal device with incoming and outgoing channels of spin up and
down and the spin-dependent scattering in the vicinity of the wall is modelled
using classical resistances. We derive the conductance of the circuit in terms
of general conductance parameters for a domain wall. We then calculate these
conductance parameters for the case of ballistic transport through the domain
wall, and obtain a simple formula for the domain wall magnetoresistance which
gives a result consistent with recent experiments. The spin transfer torque
exerted on a domain wall by a spin-polarized current is calculated using the
circuit model and an estimate of the speed of the resulting wall motion is
made.Comment: 10 pages, 5 figures; submitted to Physical Review
Magnonic Crystal with Two-Dimensional Periodicity as a Waveguide for Spin Waves
We describe a simple method of including dissipation in the spin wave band
structure of a periodic ferromagnetic composite, by solving the Landau-Lifshitz
equation for the magnetization with the Gilbert damping term. We use this
approach to calculate the band structure of square and triangular arrays of Ni
nanocylinders embedded in an Fe host. The results show that there are certain
bands and special directions in the Brillouin zone where the spin wave lifetime
is increased by more than an order of magnitude above its average value. Thus,
it may be possible to generate spin waves in such composites decay especially
slowly, and propagate especially large distances, for certain frequencies and
directions in -space.Comment: 13 pages, 4 figures, submitted to Phys Rev
Chern Numbers for Spin Models of Transition Metal Nanomagnets
We argue that ferromagnetic transition metal nanoparticles with fewer than
approximately 100 atoms can be described by an effective Hamiltonian with a
single giant spin degree of freedom. The total spin of the effective
Hamiltonian is specified by a Berry curvature Chern number that characterizes
the topologically non-trivial dependence of a nanoparticle's many-electron
wavefunction on magnetization orientation. The Berry curvatures and associated
Chern numbers have a complex dependence on spin-orbit coupling in the
nanoparticle and influence the semiclassical Landau-Liftshitz equations that
describe magnetization orientation dynamics
Switching the Magnetic Vortex Core in a Single Nanoparticle
Imaging and manipulating the spin structure of nano- and mesoscale magnetic systems is a challenging topic in magnetism, yielding a wide range of spin phenomena such as skyrmions, hedgehog-like spin structures, or vortices. A key example has been provided by the vortex spin texture, which can be addressed in four independent states of magnetization, enabling the development of multibit magnetic storage media. Most of the works devoted to the study of the magnetization reversal mechanisms of the magnetic vortices have been focused on micrometer-size magnetic platelets. Here we report the experimental observation of the vortex state formation and annihilation in individual 25 nm molecular-based magnetic nanoparticles measured by low-temperature variable-field magnetic force microscopy. Interestingly, in these nanoparticles the switching of the vortex core can be induced with very small values of the applied static magnetic field
Substituting the main group element in cobalt - iron based Heusler alloys: CoFeAlSi
This work reports about electronic structure calculations for the Heusler
compound CoFeAlSi. Particular emphasis was put on the role of
the main group element in this compound. The substitution of Al by Si leads to
an increase of the number of valence electrons with increasing Si content and
may be seen as electron-doping. Self-consistent electronic structure
calculations were performed to investigate the consequences of the electron
doping for the magnetic properties. The series CoFeAlSi is
found to exhibit half-metallic ferromagnetism and the magnetic moment follows
the Slater-Pauling rule. It is shown that the electron-doping stabilises the
gap in the minority states for .Comment: J. Phys. D (accepted
- …
