3,489 research outputs found
The microscopic nature of localization in the quantum Hall effect
The quantum Hall effect arises from the interplay between localized and
extended states that form when electrons, confined to two dimensions, are
subject to a perpendicular magnetic field. The effect involves exact
quantization of all the electronic transport properties due to particle
localization. In the conventional theory of the quantum Hall effect,
strong-field localization is associated with a single-particle drift motion of
electrons along contours of constant disorder potential. Transport experiments
that probe the extended states in the transition regions between quantum Hall
phases have been used to test both the theory and its implications for quantum
Hall phase transitions. Although several experiments on highly disordered
samples have affirmed the validity of the single-particle picture, other
experiments and some recent theories have found deviations from the predicted
universal behaviour. Here we use a scanning single-electron transistor to probe
the individual localized states, which we find to be strikingly different from
the predictions of single-particle theory. The states are mainly determined by
Coulomb interactions, and appear only when quantization of kinetic energy
limits the screening ability of electrons. We conclude that the quantum Hall
effect has a greater diversity of regimes and phase transitions than predicted
by the single-particle framework. Our experiments suggest a unified picture of
localization in which the single-particle model is valid only in the limit of
strong disorder
Evaluator services for optimised service placement in distributed heterogeneous cloud infrastructures
Optimal placement of demanding real-time interactive applications in a distributed heterogeneous cloud very quickly results in a complex tradeoff between the application constraints and resource capabilities. This requires very detailed information of the various requirements and capabilities of the applications and available resources. In this paper, we present a mathematical model for the service optimization problem and study the concept of evaluator services as a flexible and efficient solution for this complex problem. An evaluator service is a service probe that is deployed in particular runtime environments to assess the feasibility and cost-effectiveness of deploying a specific application in such environment. We discuss how this concept can be incorporated in a general framework such as the FUSION architecture and discuss the key benefits and tradeoffs for doing evaluator-based optimal service placement in widely distributed heterogeneous cloud environments
Novel metallic and insulating states at a bent quantum Hall junction
A non-planar geometry for the quantum Hall (QH) effect is studied, whereby
two quantum Hall (QH) systems are joined at a sharp right angle. When both
facets are at equal filling factor nu the junction hosts a channel with
non-quantized conductance, dependent on nu. The state is metallic at nu = 1/3,
with conductance along the junction increasing as the temperature T drops. At
nu = 1, 2 it is strongly insulating, and at nu = 3, 4 shows only weak T
dependence. Upon applying a dc voltage bias along the junction, the
differential conductance again shows three different behaviors. Hartree
calculations of the dispersion at the junction illustrate possible
explanations, and differences from planar QH structures are highlighted.Comment: 5 pages, 4 figures, text + figs revised for clarit
Oriënterend bodemonderzoek van de terreinen van de samenwerkende vennootschap voor productie van elektriciteit (SPE NV) gelegen te Gent, Kattenberg
Composite fermions in periodic and random antidot lattices
The longitudinal and Hall magnetoresistance of random and periodic arrays of artificial scatterers, imposed on a high-mobility two-dimensional electron gas, were investigated in the vicinity of Landau level filling factor ν=1/2. In periodic arrays, commensurability effects between the period of the antidot array and the cyclotron radius of composite fermions are observed. In addition, the Hall resistance shows a deviation from the anticipated linear dependence, reminiscent of quenching around zero magnetic field. Both effects are absent for random antidot lattices. The relative amplitude of the geometric resonances for opposite signs of the effective magnetic field and its dependence on illumination illustrate enhanced soft wall effects for composite fermions
Multilinear Wavelets: A Statistical Shape Space for Human Faces
We present a statistical model for D human faces in varying expression,
which decomposes the surface of the face using a wavelet transform, and learns
many localized, decorrelated multilinear models on the resulting coefficients.
Using this model we are able to reconstruct faces from noisy and occluded D
face scans, and facial motion sequences. Accurate reconstruction of face shape
is important for applications such as tele-presence and gaming. The localized
and multi-scale nature of our model allows for recovery of fine-scale detail
while retaining robustness to severe noise and occlusion, and is
computationally efficient and scalable. We validate these properties
experimentally on challenging data in the form of static scans and motion
sequences. We show that in comparison to a global multilinear model, our model
better preserves fine detail and is computationally faster, while in comparison
to a localized PCA model, our model better handles variation in expression, is
faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
Quantum Hall Effect in a Two-Dimensional Electron System Bent by 90 Degrees
Using a new MBE growth technique, we fabricate a two-dimensional electron
system which is bent around an atomically sharp 90 degree corner. In the
quantum Hall regime under tilted magnetic fields, we can measure equilibration
between both co- and counter-propagating edge channels of arbitrary filling
factor ratio. We present here 4-point magnetotransport characterization of the
corner junction with filling factor combinations which can all be explained
using the standard Landauer-Buttiker edge channel picture. The success of this
description confirms the realization of a new type of quantum Hall edge
geometry.Comment: 4 pages, figures included Typographical errors corrected, reference
adde
Classification of Higher Dimensional Spacetimes
We algebraically classify some higher dimensional spacetimes, including a
number of vacuum solutions of the Einstein field equations which can represent
higher dimensional black holes. We discuss some consequences of this work.Comment: 16 pages, 1 Tabl
Service oriented networking
This paper introduces a new paradigm for service oriented networking being developed in the FUSION project(1). Despite recent proposals in the area of information centric networking, a similar treatment of services - where networked software functions, rather than content, are dynamically deployed, replicated and invoked - has received little attention by the network research community to date. Our approach provides the mechanisms required to deploy a replicated service instance in the network and to route client requests to the closest instance in an efficient manner. We address the main issues that such a paradigm raises including load balancing, resource registration, domain monitoring and inter-domain orchestration. We also present preliminary evaluation results of current work
- …
