3,302 research outputs found

    The Remarkable Mid-Infrared Jet of Massive Young Stellar Object G35.20-0.74

    Full text link
    The young massive stellar object G35.20-0.74 was observed in the mid-infrared using T-ReCS on Gemini South. Previous observations have shown that the near infrared emission has a fan-like morphology that is consistent with emission from the northern lobe of a bipolar radio jet known to be associated with this source. Mid-infrared observations presented in this paper show a monopolar jet-like morphology as well, and it is argued that the mid-infrared emission observed is dominated by thermal continuum emission from dust. The mid-infrared emission nearest the central stellar source is believed to be directly heated dust on the walls of the outflow cavity. The hydroxyl, water, and methanol masers associated with G35.20-0.74 are spatially located along these mid-infrared cavity walls. Narrow jet or outflow cavities such as this may also be the locations of the linear distribution of methanol masers that are found associated with massive young stellar objects. The fact that G35.20-0.74 has mid-infrared emission that is dominated by the outflow, rather than disk emission, is a caution to those that consider mid-infrared emission from young stellar objects as only coming from circumstellar disks.Comment: Accepted for publication in ApJ Letters; 4 pages; 2 figures; a version with full resolution images is available here: http://www.ctio.noao.edu/~debuizer

    Model of the W3(OH) environment based on data for both maser and 'quasi-thermal' methanol lines

    Full text link
    In studies of the environment of massive young stellar objects, recent progress in both observations and theory allows a unified treatment of data for maser and 'quasi-thermal' lines. Interferometric maser images provide information on the distribution and kinematics of masing gas on small spatial scales. Observations of multiple masing transitions provide constraints on the physical parameters. Interferometric data on 'quasi-thermal' molecular lines permits an investigation of the overall distribution and kinematics of the molecular gas in the vicinity of young stellar objects, including those which are deeply embedded. Using multiple transitions of different molecules, one can obtain good constraints on the physical and chemical parameters. Combining these data enables the construction of unified models, which take into account spatial scales differing by orders of magnitude. Here we present such a combined analysis of the environment around the ultracompact HII region in W3(OH). This includes the structure of the methanol masing region, physical structure of the near vicinity of W3(OH), detection of new masers in the large-scale shock front and embedded sources in the vicinity of the TW young stellar object.Comment: To appear in the Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galactic Nuclei", Eds. Y.Hagiwara, W.A.Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwe

    Database of Molecular Masers and Variable Stars

    Full text link
    We present the database of maser sources in H2O, OH and SiO lines that can be used to identify and study variable stars at evolved stages. Detecting the maser emission in H2O, OH and SiO molecules toward infrared-excess objects is one of the methods of identification long-period variables (LPVs, including Miras and Semi-Regular), because these stars exhibit maser activity in their circumstellar shells. Our sample contains 1803 known LPV objects. 46% of these stars (832 objects) manifest maser emission in the line of at least one molecule: H2O, OH or SiO. We use the database of circumstellar masers in order to search for long-periodic variables which are not included in the General Catalogue of Variable Stars (GCVS). Our database contains 4806 objects (3866 objects without associations in GCVS catalog) with maser detection in at least one molecule. Therefore it is possible to use the database in order to locate and study the large sample of long-period variable stars. Entry to the database at http://maserdb.netComment: Accepted for publication in RA

    Discovery of Two New Class II Methanol Maser Transitions in G345.01+1.79

    Full text link
    We have used the Swedish ESO Submillimetre Telescope (SEST) to search for new class II methanol maser transitions towards the southern source G345.01+1.79. Over a period of 5 days we observed 11 known or predicted class II methanol maser transitions. Emission with the narrow line width and characteristic velocity of class II methanol masers (in this source) was detected in 8 of these transitions, two of which have not previously been reported as masers. The new class II methanol maser transitions are the 13(-3)-12(-4)E transition at 104.1 GHz and the 5(1)-4(2)E transition at 216.9 GHz. Both of these are from transition series for which there are no previous known class II methanol maser transitions. This takes the total number of known class II methanol maser series to 10, and the total number of transitions (or transition groups) to 18. The observed 104.1 GHz maser suggests the presence of two or more regions of masing gas with similar line of sight velocities, but quite different physical conditions. Although these newly discovered transitions are likely to be relatively rare, where they are observed combined studies using the Australia Telescope Compact Array and the Atacama Large Millimeter Array offer the prospect to be able to undertake multi-transition methanol maser studies with unprecedented detail.Comment: 8 pages, 3 figures, accepted for publication in ApJ Letter

    Molecular Emission in Dense Massive Clumps from the Star-Forming Regions S231-S235

    Full text link
    The article deals with observations of star-forming regions S231-S235 in 'quasi-thermal' lines of ammonia (NH3_3), cyanoacetylene (HC3_3N) and maser lines of methanol (CH3_3OH) and water vapor (H2_2O). S231-S235 regions is situated in the giant molecular cloud G174+2.5. We selected all massive molecular clumps in G174+2.5 using archive CO data. For the each clump we determined mass, size and CO column density. After that we performed observations of these clumps. We report about first detections of NH3_3 and HC3_3N lines toward the molecular clumps WB89 673 and WB89 668. This means that high-density gas is present there. Physical parameters of molecular gas in the clumps were estimated using the data on ammonia emission. We found that the gas temperature and the hydrogen number density are in the ranges 16-30 K and 2.8-7.2×103\times10^3 cm3^{-3}, respectively. The shock-tracing line of CH3_3OH molecule at 36.2 GHz is newly detected toward WB89 673.Comment: 16 pages, 4 figure

    A Search for 6.7 GHz Methanol Masers in M33

    Full text link
    We report the negative results from a search for 6.7 GHz methanol masers in the nearby spiral galaxy M33. We observed 14 GMCs in the central 4 kpc of the Galaxy, and found 3 sigma upper limits to the flux density of ~9 mJy in spectral channels having a velocity width of 0.069 km/s. By velocity shifting and combining the spectra from the positions observed, we obtain an effective 3sigma upper limit on the average emission of ~1mJy in a 0.25 km/s channel. These limits lie significantly below what we would expect based on our estimates of the methanol maser luminosity function in the Milky Way. The most likely explanation for the absence of detectable methanol masers appears to be the metallicity of M33, which is modestly less than that of the Milky Way

    Sources of Radiation in the Early Universe: The Equation of Radiative Transfer and Optical Distances

    Full text link
    We have derived the radiative-transfer equation for a point source with a specified intensity and spectrum, originating in the early Universe between the epochs of annihilation and recombination, at redshifts z_\s =10^8\div 10^4. The direct radiation of the source is separated from the diffuse radiation it produces. Optical distances from the source for Thomson scattering and bremsstrahlung absorption at the maximum of the thermal background radiation are calculated as a function of the redshift z.The distances grow sharply with decreasing z, approaching asymptotic values, the absorption distance increasing more slowly and reaching their limiting values at lower z. For the adopted z values, the optical parameters of the Universe can be described in a flat model with dusty material and radiation, and radiative transfer can be treated in a grey approximation.Comment: 14 pages, 2 figure
    corecore