474 research outputs found
Control of Multi-level Voltage States in a Hysteretic SQUID Ring-Resonator System
In this paper we study numerical solutions to the quasi-classical equations
of motion for a SQUID ring-radio frequency (rf) resonator system in the regime
where the ring is highly hysteretic. In line with experiment, we show that for
a suitable choice of of ring circuit parameters the solutions to these
equations of motion comprise sets of levels in the rf voltage-current dynamics
of the coupled system. We further demonstrate that transitions, both up and
down, between these levels can be controlled by voltage pulses applied to the
system, thus opening up the possibility of high order (e.g. 10 state),
multi-level logic and memory.Comment: 8 pages, 9 figure
Switching between dynamic states in intermediate-length Josephson junctions
The appearance of zero-field steps (ZFS’s) in the current-voltage characteristics of intermediate-length overlap-geometry Josephson tunnel junctions described by a perturbed sine-Gordon equation (PSGE) is associated with the growth of parametrically excited instabilities of the McCumber background curve (MCB). A linear stability analysis of a McCumber solution of the PSGE in the asymptotic linear region of the MCB and in the absence of magnetic field yields a Hill’s equation which predicts how the number, locations, and widths of the instability regions depend on the junction parameters. A numerical integration of the PSGE in terms of truncated series of time-dependent Fourier spatial modes verifies that the parametrically excited instabilities of the MCB evolve into the fluxon oscillations characteristic of the ZFS’s. An approximate analysis of the Fourier mode equations in the presence of a small magnetic field yields a field-dependent Hill’s equation which predicts that the major effect of such a field is to reduce the widths of the instability regions. Experimental measurements on Nb-NbxOy-Pb junctions of intermediate length, performed at different operating temperatures in order to vary the junction parameters and for various magnetic field values, verify the physical existence of switching from the MCB to the ZFS’s. Good qualitative, and in many cases quantitative, agreement between analytic, numerical, and experimental results is obtained
Inverse ac Josephson Effect for a Fluxon in a Long Modulated Junction
We analyze motion of a fluxon in a weakly damped ac-driven long Josephson
junction with a periodically modulated maximum Josephson current density. We
demonstrate both analytically and numerically that a pure {\it ac} bias current
can drive the fluxon at a {\it resonant} mean velocity determined by the
driving frequency and the spatial period of the modulation, provided that the
drive amplitude exceeds a certain threshold value. In the range of strongly
``relativistic'' mean velocities, the agreement between results of a numerical
solution of the effective (ODE) fluxon equation of motion and analytical
results obtained by means of the harmonic-balance analysis is fairly good;
morever, a preliminary PDE result tends to confirm the validity of the
collective-coordinate (PDE-ODE) reduction. At nonrelativistic mean velocities,
the basin of attraction, in position-velocity space, for phase-locked solutions
becomes progressively smaller as the mean velocity is decreased.Comment: 15 pages, 26 kbytes, of text in plain LaTeX. A uuencoded,
Z-compressed tar archive, 21 kbytes, containing 3 PostScript,
[email protected], [email protected],
[email protected]
Recommended from our members
An Improved Global Model for Air-Sea Exchange of Mercury: High Concentrations over the North Atlantic
We develop an improved treatment of the surface ocean in the GEOS-Chem global 3-D biogeochemical model for mercury (Hg). We replace the globally uniform subsurface ocean Hg concentrations used in the original model with basin-specific values based on measurements. Updated chemical mechanisms for Hg0/HgII redox reactions in the surface ocean include both photochemical and biological processes, and we improved the parametrization of particle-associated Hg scavenging. Modeled aqueous Hg concentrations are consistent with limited surface water observations. Results more accurately reproduce high-observed MBL concentrations over the North Atlantic (NA) and the associated seasonal trends. High seasonal evasion in the NA is driven by inputs from Hg enriched subsurface waters through entrainment and Ekman pumping. Globally, subsurface waters account for 40% of Hg inputs to the ocean mixed layer, and 60% is from atmospheric deposition. Although globally the ocean is a net sink for 3.8 Mmol Hg y−1, the NA is a net source to the atmosphere, potentially due to enrichment of subsurface waters with legacy Hg from historical anthropogenic sources.Engineering and Applied Science
Subharmonic Shapiro steps and assisted tunneling in superconducting point contacts
We analyze the current in a superconducting point contact of arbitrary
transmission in the presence of a microwave radiation. The interplay between
the ac Josephson current and the microwave signal gives rise to Shapiro steps
at voltages V = (m/n) \hbar \omega_r/2e, where n,m are integer numbers and
\omega_r is the radiation frequency. The subharmonic steps (n different from 1)
are a consequence of the ocurrence of multiple Andreev reflections (MAR) and
provide an unambiguous signature of the peculiar ac Josephson effect at high
transmission. Moreover, the dc current exhibits a rich subgap structure due to
photon-assisted MARs.Comment: Revtex, 4 pages, 4 figure
Pinch Resonances in a Radio Frequency Driven SQUID Ring-Resonator System
In this paper we present experimental data on the frequency domain response
of a SQUID ring (a Josephson weak link enclosed by a thick superconducting
ring) coupled to a radio frequency (rf) tank circuit resonator. We show that
with the ring weakly hysteretic the resonance lineshape of this coupled system
can display opposed fold bifurcations that appear to touch (pinch off). We
demonstrate that for appropriate circuit parameters these pinch off lineshapes
exist as solutions of the non-linear equations of motion for the system.Comment: 9 pages, 8 figures, Uploaded as implementing a policy of arXiving old
paper
Isotope Effect for the Penetration Depth in Superconductors
We show that various factors can lead to an isotopic dependence of the
penetration depth . Non-adiabaticity (Jahn-Teller crossing) leads to
the isotope effect of the charge carrier concentration and, consequently,
of in doped superconductors such as the cuprates. A general equation
relating the isotope coefficients of and of is presented for
London superconductors. We further show that the presence of magnetic
impurities or a proximity contact also lead to an isotopic dependence of
; the isotope coefficient turns out to be temperature dependent,
, in these cases. The existence of the isotope effect for the
penetration depth is predicted for conventional as well as for high-temperature
superconductors. Various experiments are proposed and/or discussed.Comment: 11 pages, 8 figures, accepted for publication in Phys. Rev.
Non-linear Multi-level Dynamics of a SQUID Ring-resonator System in the Hysteretic Regime
We consider the dynamical behavior of a strongly hysteretic SQUID ring coupled to a radio frequency resonator. By experiment we show that this system can display novel multiple level structures in its rf voltage-current characteristics which are solutions of the nonlinear equations of motion describing the system
- …
