723 research outputs found

    Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method

    Get PDF
    The well-known method presented by Swanepoel can be used to determine the refractive index dispersion of thin films in the near-infrared region from wavelength values at maxima and minima, only, of the transmission interference fringes. In order to extend this method into the mid-infrared (MIR) spectral region (our measurements are over the wavelength range from 2 to 25 μm), the method is improved by using a two-term Sellmeier model instead of the Cauchy model as the dispersive equation. Chalcogenide thin films of nominal batch composition As40Se60 (atomic %) and Ge16As24Se15.5Te44.5 (atomic %) are prepared by a hot-pressing technique. The refractive index dispersion of the chalcogenide thin films is determined by the improved method with a standard deviation of less than 0.0027. The accuracy of the method is shown to be better than 0.4% at a wavelength of 3.1 μm by comparison with a benchmark refractive index value obtained from prism measurements on Ge16As24Se15.5Te44.5 material taken from the same batch

    Mouse models of preterm birth: Suggested assessment and reporting guidelines

    Get PDF
    Preterm birth affects approximately 1 out of every 10 births in the United States, leading to high rates of mortality and long-term negative health consequences. To investigate the mechanisms leading to preterm birth so as to develop prevention strategies, researchers have developed numerous mouse models of preterm birth. However, the lack of standard definitions for preterm birth in mice limits our field\u27s ability to compare models and make inferences about preterm birth in humans. In this review, we discuss numerous mouse preterm birth models, propose guidelines for experiments and reporting, and suggest markers that can be used to assess whether pups are premature or mature. We argue that adoption of these recommendations will enhance the utility of mice as models for preterm birth

    Ionospheric response to the corotating interaction region-driven geomagnetic storm of October 2002

    Get PDF
    Unlike the geomagnetic storms produced by coronal mass ejections (CMEs), the storms generated by corotating interaction regions (CIRs) are not manifested by dramatic enhancements of the ring current. The CIR-driven storms are however capable of producing other phenomena typical for the magnetic storms such as relativistic particle acceleration, enhanced magnetospheric convection and ionospheric heating. This paper examines ionospheric plasma anomalies produced by a CIR-driven storm in the middle- and high-latitude ionosphere with a specific focus on the polar cap region. The moderate magnetic storm which took place on 14–17 October 2002 has been used as an example of the CIR-driven event. Four-dimensional tomographic reconstructions of the ionospheric plasma density using measurements of the total electron content along ray paths of GPS signals allow us to reveal the large-scale structure of storm-induced ionospheric anomalies. The tomographic reconstructions are compared with the data obtained by digital ionosonde located at Eureka station near the geomagnetic north pole. The morphology and dynamics of the observed ionospheric anomalies is compared qualitatively to the ionospheric anomalies produced by major CME-driven storms. It is demonstrated that the CIR-driven storm of October 2002 was able to produce ionospheric anomalies comparable to those produced by CME-driven storms of much greater Dst magnitude. This study represents an important step in linking the tomographic GPS reconstructions with the data from ground-based network of digital ionosondes

    Extreme Ultraviolet Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO): Overview of Science Objectives, Instrument Design, Data Products, and Model Developments

    Get PDF
    The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105 nm with unprecedented spectral resolution (0.1 nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37 nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105 nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39 nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6 nm. The EVE data products include a near real-time space-weather product (Level 0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15 minutes. The EVE higher-level products are Level 2 with the solar EUV irradiance at higher time cadence (0.25 seconds for photometers and ten seconds for spectrographs) and Level 3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.United States. National Aeronautics and Space Administration (contract NAS5-02140

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control

    Coordinated investigation of summer time mid-latitude descending E layer (Es) perturbations using Na lidar, ionosonde, and meteor wind radar observations over Logan, Utah (41.7°N, 111.8°W)

    Get PDF
    It is well known that there is a strong correlation between the formation of a descending sporadic E layer (Es) and the occurrence of large upper atmospheric zonal wind shears, most likely driven by solar thermal tides and/or gravity waves. We present new results of Esperturbation events captured between 13 and 17 July 2011 (UT days 194–198) as part of a coordinated campaign using a wind/temperature Na lidar at Utah State University [41.7ºN, 111.8°W], and a Canadian Advanced Digital Ionosonde (CADI; Scientific Instrumentation Ltd., Saskatoon, Saskatchewan, Canada) and SkiYMet meteor wind radar, both located at nearby Bear Lake Observatory [41.9°N, 111.4°W]. During this period, the CADI detected strong descending Es on 2 days (195 and 197) when large modulations of the top-side mesospheric Na layer occurred in synchronism with strong oscillations in the ionosonde E region echoes. A weakening in the descending E layer echoes was observed on the other 2 days (196 and 198) coincident with a large reduction in the zonal diurnal and semidiurnal amplitudes above 95 km. Both tidal components were found to have comparable contributions to the total zonal wind shear that was critical for Es formation and its downward propagation. Further investigation indicates that the weakening tidal amplitudes and the occurrence of the Es events were also influenced by a strong quasi-two-day period modulation, suggesting significant quasi-two-day wave (QTDW) interactions with the tides. Indeed, a nonlinear, wave-wave interaction-induced 16-hour period child wave was also detected, with amplitude comparable to that of the prevailing tides. These interaction processes and their associated effects are consistent with earlier Thermosphere Ionosphere Mesosphere Electrodynamics General Circulation Model studies of nonlinear interactions between the migrating tidal waves and the QTDW and were probably responsible for the observed damping of the tidal amplitudes resulting in the disruption of the Es

    Patches in the Polar Ionosphere: UT and Seasonal Dependence

    Get PDF
    The seasonal and UT dependencies of patches in the polar ionosphere are simulated using the Utah State University time dependent ionospheric model (TDIM). Patch formation is achieved by changing the plasma convection pattern in response to temporal changes in the interplanetary magnetic field (IMF) By component during periods of southward IMF. This mechanism redirects the plasma flow from the dayside high-density region, which is the source of the tongue of ionization (TOI) density feature, through the throat and leads to patches, rather than a continuous TOI. The model predicts that the patches are absent at winter solstice (northern hemisphere) between 0800 and 1200 UT and that they have their largest seasonal intensity at winter solstice between 2000 and 2400 UT. Between winter solstice and equinox, patches are strong and present all day. Patches are present in summer as well, although their intensity is only tens of percent above the background density. These winter-to-equinox findings are also shown to be consistent with observations. The model was also used to predict times at which patch observations could be performed to determine the contributions from other patch mechanisms. This observational window is ± 20 days about winter solstice between 0800 and 1200 UT in the northern hemisphere. In this observational window the TOI is either absent or reduced to a very low density. Hence the time dependent electric field mechanism considered in this study does not produce patches, and if they are observed, then they must be due to some other mechanism

    Space Weather Effects on Mid-Latitude HF Propagation Paths: Observations and a Data-Driven D-Region Model

    Get PDF
    A two-pronged study is under way to improve understanding of the D region response to space weather and its effects on HF propagation. One part, the HF Investigation of D region Ionospheric Variation Experiment (HIDIVE), is designed to obtain simultaneous, quantitative propagation and absorption data from an HF signal monitoring network along with solar X-ray flux from the NOAA GOES satellites. Observations have been made continuously since late December 2002 and include the severe disturbances of October–November 2003. GOES satellite X-ray observations and geophysical indices are assimilated into the Data-Driven D Region (DDDR) electron density model developed as the second part of this project. ACE satellite proton observations, the HIDIVE HF observations, and possibly other real-time space weather data will be assimilated into DDDR in the future. Together with the Ionospheric Forecast Model developed by the Space Environment Corporation, DDDR will provide improved specification of HF propagation and absorption characteristics when supplemented by near-real-time propagation observations from HIDIVE

    Effect of High Latitude Ionospheric Convection on Sun-Aligned Polar Caps

    Get PDF
    A coupled magnetospheric-ionospheric (M-I) MHD model has been used to simulate the formation of Sun-aligned polar cap arcs for a variety of interplanetary magnetic field (IMF) dependent polar cap convection fields. The formation process involves launching an Alfvén shear wave from the magnetosphere to the ionosphere where the ionospheric conductance can react self-consistently to changes in the upward currents. We assume that the initial Alfvén shear wave is the result of solar wind-magnetosphere interactions. The simulations show how the E region density is affected by the changes in the electron precipitation that are associated with the upward currents. These changes in conductance lead to both a modified Alfvén wave reflection at the ionosphere and the generation of secondary Alfvén waves in the ionosphere. The ensuing bouncing of the Alfvén waves between the ionosphere and magnetosphere is followed until an asymptotic solution is obtained. At the magnetosphere the Alfvén waves reflect at a fixed boundary. The coupled M-I Sun-aligned polar cap arc model of Zhu et al. (1993a) is used to carry out the simulations. This study focuses on the dependence of the polar cap arc formation on the background (global) convection pattern. Since the polar cap arcs occur for northward and strong By IMF conditions, a variety of background convection patterns can exist when the arcs are present. The study shows that polar cap arcs can be formed for all these convection patterns; however, the arc features are dramatically different for the different patterns. For weak sunward convection a relatively confined single pair of current sheets is associated with the imposed Alfvén shear wave structure. However, when the electric field exceeds a threshold, the arc structure intensifies, and the conductance increases as does the local Joule heating rate. These increases are faster than a linear dependence on the background electric field strength. Furthermore, above the threshold, the single current sheet pair splits into multiple current sheet pairs. For the fixed initial ionospheric and magnetospheric conditions used in this study, the separation distance between the current pairs was found to be almost independent of the background electric field strength. For either three-cell or distorted two-cell background convection patterns the arc formation favored the positive By case in the northern hemisphere

    Dynamical Effects of Ionospheric Conductivity on the Formation of Polar Cap Arcs

    Get PDF
    By using a magnetosphere-ionosphere (M-I) coupling model of polar cap arcs [Zhu et al., 1993], a systematic model study of the effects of ionospheric background conductivity on the formation of polar cap arcs has been conducted. The variations of the ionospheric background conductivity in the model study cover typical ionospheric conditions, including solar minimum, solar maximum, winter, and summer. The simulation results clearly indicate that the ionospheric background conductivity can dynamically affect the mesoscale features of polar cap arcs through a nonlinear M-I coupling process associated with the arcs
    corecore