4,329 research outputs found
Nonstoichiometry and Weyl fermionic behavior in TaAs
The band structure of TaAs provides the necessary conditions for the emergence of Weyl fermions. Measurements verifying this fact are remarkably robust, given the reported levels of nonstoichiometry in typical single crystals. Here we demonstrate the surprising fact that a small degree of nonstoichiometry is essential for such observations in a wide range of temperatures. From first principles, we compute how crystal defects influence the position of the Fermi level relative to the so-called Weyl points, a key factor in allowing the detection of these particles. We show that observations of Weyl fermions depend crucially on nonstoichiometry and only occur within narrow ranges of elemental composition and temperature, indicating a considerable degree of fortuity in their discovery. Our approach suggests that in some cases the drive to produce ultra-pure crystals for measurements of exotic emergent phenomena may be misplaced
Policy Innovations, Political Preferences, and Cartel Prosecutions
While price-fixing cartel prosecutions have received significant attention, the policy determinants and the political preferences that guide such antitrust prosecutions remain understudied. We empirically examine the intertemporal shifts in U.S. antitrust cartel prosecutions during the period 1969-2013. This period has seen substantive policy innovations with increasing penalties related to fines and jail terms. There appear to be four distinct cartel policy regimes: pre-1978, 1978-1992, 1993-2003, and 2004-2013. Our empirical estimates show significant variation in the number of cartels prosecuted and the penalties imposed across the policy regimes. The more recent regimes are characterized by far fewer cartels prosecuted, but with substantially higher penalties levied on firms and individuals. While effective deterrence is one explanation for these patterns, we are more inclined to conclude that US cartel enforcement has seen an underlying shift away from focusing on smaller cartels to larger and multinational firms. In terms of political effects, our results reveal no clear inter-political party effect on cartel prosecutions, but there appear to be interesting intra-political party effects. We find that particular Presidencies matter for cartel prosecutions, and variation across Presidential administrations led to marked shifts in the total number of cartels prosecuted. Overall, the shifts in the number of cartels prosecuted and penalties levied portray changing policy priorities and a search for the optimal enforcement design to curtail one of the clearest sources of welfare loss, collusion
Possibility to study eta-mesic nuclei and photoproduction of slow eta-mesons at the GRAAL facility
A new experiment is proposed with the aim to study eta-mesic nuclei and
low-energy interactions of eta with nuclei. Two decay modes of eta produced by
a photon beam inside a nucleus will be observed, namely a collisional decay
\eta N \to \pi N inside the nucleus and the radiative decay \eta \to \gamma
\gamma outside. In addition, a collisional decay of stopped S_{11}(1535)
resonance inside the nucleus, S_{11}(1535) N \to N N, will be studied. The
experiment can be performed using the tagged photon beam at ESRF with the
end-point energy 1000 MeV and the GRAAL detector which includes a
high-resolution BGO calorimeter and a large acceptance lead-scintillator
time-of-flight wall. Some results of simulation and estimates of yields are
given.Comment: 20 pages, 19 figure
Antiferromagnetism at T > 500 K in the Layered Hexagonal Ruthenate SrRu2O6
We report an experimental and computational study of magnetic and electronic
properties of the layered Ru(V) oxide SrRu2O6 (hexagonal, P-3 1m), which shows
antiferromagnetic order with a N\'eel temperature of 563(2) K, among the
highest for 4d oxides. Magnetic order occurs both within edge-shared octahedral
sheets and between layers and is accompanied by anisotropic thermal expansivity
that implies strong magnetoelastic coupling of Ru(V) centers. Electrical
transport measurements using focused ion beam induced deposited contacts on a
micron-scale crystallite as a function of temperature show p-type
semiconductivity. The calculated electronic structure using hybrid density
functional theory successfully accounts for the experimentally observed
magnetic and electronic structure and Monte Carlo simulations reveals how
strong intralayer as well as weaker interlayer interactions are a defining
feature of the high temperature magnetic order in the material.Comment: Physical Review B 2015 accepted for publicatio
Temperature behavior of the magnon modes of the square lattice antiferromagnet
A spin-wave theory of short-range order in the square lattice Heisenberg
antiferromagnet is formulated. With growing temperature from T=0 a gapless mode
is shown to arise simultaneously with opening a gap in the conventional
spin-wave mode. The spectral intensity is redistributed from the latter mode to
the former. For low temperatures the theory reproduces results of the modified
spin-wave theory by M.Takahashi, J.E.Hirsch et al. and without fitting
parameters gives values of observables in good agreement with Monte Carlo
results in the temperature range 0 <= T < 0.8J where J is the exchange
constant.Comment: 12 pages, 2 figure
Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions
We consider two-dimensional Fermi liquids in the vicinity of a quantum
transition to a phase with commensurate, antiferromagnetic long-range order.
Depending upon the Fermi surface topology, mean-field spin-density-wave theory
predicts two different types of such transitions, with mean-field dynamic
critical exponents (when the Fermi surface does not cross the magnetic
zone boundary, type ) and (when the Fermi surface crosses the magnetic
zone boundary, type ). The type system only displays behavior at
all energies and its scaling properties are similar (though not identical) to
those of an insulating Heisenberg antiferromagnet. Under suitable conditions
precisely stated in this paper, the type system displays a crossover from
relaxational behavior at low energies to type behavior at high energies. A
scaling hypothesis is proposed to describe this crossover: we postulate a
universal scaling function which determines the entire, temperature-,
wavevector-, and frequency-dependent, dynamic, staggered spin susceptibility in
terms of 4 measurable, , parameters (determining the distance, energy, and
order parameter scales, plus one crossover parameter). The scaling function
contains the full scaling behavior in all regimes for both type and
systems. The crossover behavior of the uniform susceptibility and the specific
heat is somewhat more complicated and is also discussed. Explicit computation
of the crossover functions is carried out in a large expansion on a
mean-field model. Some new results for the critical properties on the ordered
side of the transition are also obtained in a spin-density wave formalism. The
possible relevance of our results to the doped cuprate compounds is briefly
discussed.Comment: 20 pages, REVTeX, 6 figures (uuencoded compressed PostScript file for
figures is appended
Development of Interatomic Potentials for Supported Nanoparticles: The Cu/ZnO Case
We present a potential model that has been parametrized to reproduce accurately metal−metal oxide interactions of Cu clusters supported on ZnO. Copper deposited on the nonpolar (101̅0) ZnO surface is investigated using the new pairwise Cu–ZnO interatomic potentials including repulsive Born–Mayer Cu–O and attractive Morse Cu–Zn potentials. Parameters of these interactions have been determined by fitting to periodic supercell DFT data using different surface terminations and Cu cluster sizes. Results of interatomic potential-based simulations show a good agreement both structurally and energetically with DFT data, and thus provide an efficient filter of configurations during a search for low DFT energy structures. Upon examining the low energy configurations of Cu clusters on ZnO nonpolar surfaces for a range of cluster sizes, we discovered why Cu islands are commonly observed on step edges on the (101̅0) surface but are rarely seen on terraces
Finding the elusive and causative autoantibody: An atypical case of autoimmune hemolytic anemia
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111227/1/ccr3203.pd
The Influence of Quantum Critical Fluctuations of Circulating Current Order Parameters on the Normal State Properties of Cuprates
We study a model of the quantum critical point of cuprates associated with
the "circulating current" order parameter proposed by Varma. An effective
action of the order parameter in the quantum disordered phase is derived using
functional integral method, and the physical properties of the normal state are
studied based on the action. The results derived within the ladder
approximation indicate that the system is like Fermi liquid near the quantum
critical point and in disordered regime up to minor corrections. This implies
that the suggested marginal Fermi liquid behavior induced by the circulating
current fluctuations will come in from beyond the ladder diagrams.Comment: 7pages, 1 figure included in RevTex file. To appear in Phys. Rev.
- …
