3,643 research outputs found

    Dynamical excitonic effects in metals and semiconductors

    Full text link
    The dynamics of an electron--hole pair induced by the time--dependent screened Coulomb interaction is discussed. In contrast to the case where the static electron--hole interaction is considered we demonstrate the occurrence of important dynamical excitonic effects in the solution of the Bethe--Salpeter equation.This is illustrated in the calculated absorption spectra of noble metals (copper and silver) and silicon. Dynamical corrections strongly affect the spectra, partially canceling dynamical self--energy effects and leading to good agreement with experiment.Comment: Accepted for publication on Phys. Rev. Let

    On classification of Poisson vertex algebras

    Get PDF
    We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators)

    On the long range correlations of thermodynamic systems out of equilibrium

    Full text link
    Experiments show that macroscopic systems in a stationary nonequilibrium state exhibit long range correlations of the local thermodynamic variables. In previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium free energy as a basic principle of nonequilibrium thermodynamics. We show here how an equation for the two point correlations can be derived from the Hamilton-Jacobi equation for arbitrary transport coefficients for dynamics with both external fields and boundary reservoirs. In contrast with fluctuating hydrodynamics, this approach can be used to derive equations for correlations of any order. Generically, the solutions of the equation for the correlation functions are non-trivial and show that long range correlations are indeed a common feature of nonequilibrium systems. Finally, we establish a criterion to determine whether the local thermodynamic variables are positively or negatively correlated in terms of properties of the transport coefficients.Comment: 4 page

    Quantitative analysis of Clausius inequality

    Full text link
    In the context of driven diffusive systems, for thermodynamic transformations over a large but finite time window, we derive an expansion of the energy balance. In particular, we characterize the transformations which minimize the energy dissipation and describe the optimal correction to the quasi-static limit. Surprisingly, in the case of transformations between homogeneous equilibrium states of an ideal gas, the optimal transformation is a sequence of inhomogeneous equilibrium states.Comment: arXiv admin note: text overlap with arXiv:1404.646

    Large deviation approach to non equilibrium processes in stochastic lattice gases

    Full text link
    We present a review of recent work on the statistical mechanics of non equilibrium processes based on the analysis of large deviations properties of microscopic systems. Stochastic lattice gases are non trivial models of such phenomena and can be studied rigorously providing a source of challenging mathematical problems. In this way, some principles of wide validity have been obtained leading to interesting physical consequences.Comment: Extended version of the lectures given by G. Jona-Lasinio at the 9th Brazilian school of Probability, August 200

    The Morphospace of Consciousness

    Full text link
    We construct a complexity-based morphospace to study systems-level properties of conscious & intelligent systems. The axes of this space label 3 complexity types: autonomous, cognitive & social. Given recent proposals to synthesize consciousness, a generic complexity-based conceptualization provides a useful framework for identifying defining features of conscious & synthetic systems. Based on current clinical scales of consciousness that measure cognitive awareness and wakefulness, we take a perspective on how contemporary artificially intelligent machines & synthetically engineered life forms measure on these scales. It turns out that awareness & wakefulness can be associated to computational & autonomous complexity respectively. Subsequently, building on insights from cognitive robotics, we examine the function that consciousness serves, & argue the role of consciousness as an evolutionary game-theoretic strategy. This makes the case for a third type of complexity for describing consciousness: social complexity. Having identified these complexity types, allows for a representation of both, biological & synthetic systems in a common morphospace. A consequence of this classification is a taxonomy of possible conscious machines. We identify four types of consciousness, based on embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii) group consciousness (resulting from group interactions), & (iv) simulated consciousness (embodied by virtual agents within a simulated reality). This taxonomy helps in the investigation of comparative signatures of consciousness across domains, in order to highlight design principles necessary to engineer conscious machines. This is particularly relevant in the light of recent developments at the crossroads of cognitive neuroscience, biomedical engineering, artificial intelligence & biomimetics.Comment: 23 pages, 3 figure

    Liquid phase epitaxy and optical investigation of KYb(WO4)2 thin layers

    Get PDF
    In recent years, Yb3+ has attracted much attention as an activating ion because of its small quantum defect for laser emission from 2F5/2 to 2F7/2 at ~1.03 µm [1], which provides high efficiency and reduced heat generation. Of high practical interest is the thin-disk laser concept [2], which possesses a tremendous advantage over rod lasers because of its axial-cooling approach and consequent weak thermal lensing and good beam quality.\ud A promising material for Yb3+ thin-disk lasers is KYb(WO4)2 (KYbW) [3]. It can be grown from high-temperature solutions [4]. Nevertheless, the growth of high-quality, single-crystalline layers with thickness in the range of the absorption length of ~13 µm at 981 nm has as yet not been reported. A suitable substrate material is KY(WO4)2 (KYW), but the relatively large differences in the thermal expansion coefficients between KYW and KYbW along the [100], [001], and especially [010] directions [5] favor low temperatures for the hetero-epitaxial growth.\ud For the first time, we demonstrate liquid phase epitaxy (LPE) of KYbW layers. The layers were grown at start temperatures as low as 520°C, which is favorable in order to decrease the thermal stresses due to the differences in the thermal expansion coefficients of substrate and layer. Moreover, the choice of [010]-oriented substrates bypasses the large difference in the thermal expansion coefficient along the [010] direction. KY1-xYbx(WO4)2 layers with varying x = 0.03-1.00 were grown by LPE. The chloride solvent consisted of the eutectic composition [6] 24.4 mol.% KCl, 30.4 mol.% NaCl, and 42.2 mol.% CsCl. The growth temperature spanned the range from 580 to 500°C and the cooling rate was 0.67-1.00 Kh-1. Crack-free, transparent KYbW layers were grown on (010) substrates.\ud Spectroscopic investigations have shown that the lifetime of ~250 µs measured in our LPE-grown KYbW layers is dominated by radiative decay and is very similar to that measured in top-seeded-solution-grown bulk samples [4]. Fast energy migration among the Yb3+ ions and energy transfer to small amounts of Tm3+ and Er3+ ions present in the YbCl3 reagent lead to visible upconversion luminescence in the layers under 981-nm excitation.\ud \ud [1] T.Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).\ud [2] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 365 (1994).\ud [3] P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Appl. Phys. B 74, 185 (2002).\ud [4] M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Phys. Rev. B 65, 165121 (2002).\ud [5] M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, F. Díaz, M. Aguiló, Mater. Sci. Forum 378-381, 710 (2001).\ud [6] D. Ehrentraut, M. Pollnau, S. Kück, Appl. Phys. B 75, 59 (2002)

    Minimum dissipation principle in stationary non equilibrium states

    Full text link
    We generalize to non equilibrium states Onsager's minimum dissipation principle. We also interpret this principle and some previous results in terms of optimal control theory. Entropy production plays the role of the cost necessary to drive the system to a prescribed macroscopic configuration

    Macroscopic current fluctuations in stochastic lattice gases

    Full text link
    We study current fluctuations in lattice gases in the macroscopic limit extending the dynamic approach to density fluctuations developed in previous articles. More precisely, we derive large deviation estimates for the space--time fluctuations of the empirical current which include the previous results. Large time asymptotic estimates for the fluctuations of the time average of the current, recently established by Bodineau and Derrida, can be derived in a more general setting. There are models where we have to modify their estimates and some explicit examples are introduced.Comment: 4 pages, LaTeX, Changed conten
    corecore