3,643 research outputs found
Dynamical excitonic effects in metals and semiconductors
The dynamics of an electron--hole pair induced by the time--dependent
screened Coulomb interaction is discussed. In contrast to the case where the
static electron--hole interaction is considered we demonstrate the occurrence
of important dynamical excitonic effects in the solution of the Bethe--Salpeter
equation.This is illustrated in the calculated absorption spectra of noble
metals (copper and silver) and silicon. Dynamical corrections strongly affect
the spectra, partially canceling dynamical self--energy effects and leading to
good agreement with experiment.Comment: Accepted for publication on Phys. Rev. Let
On classification of Poisson vertex algebras
We describe a conjectural classification of Poisson vertex algebras of CFT
type and of Poisson vertex algebras in one differential variable (= scalar
Hamiltonian operators)
On the long range correlations of thermodynamic systems out of equilibrium
Experiments show that macroscopic systems in a stationary nonequilibrium
state exhibit long range correlations of the local thermodynamic variables. In
previous papers we proposed a Hamilton-Jacobi equation for the nonequilibrium
free energy as a basic principle of nonequilibrium thermodynamics. We show here
how an equation for the two point correlations can be derived from the
Hamilton-Jacobi equation for arbitrary transport coefficients for dynamics with
both external fields and boundary reservoirs. In contrast with fluctuating
hydrodynamics, this approach can be used to derive equations for correlations
of any order. Generically, the solutions of the equation for the correlation
functions are non-trivial and show that long range correlations are indeed a
common feature of nonequilibrium systems. Finally, we establish a criterion to
determine whether the local thermodynamic variables are positively or
negatively correlated in terms of properties of the transport coefficients.Comment: 4 page
Quantitative analysis of Clausius inequality
In the context of driven diffusive systems, for thermodynamic transformations
over a large but finite time window, we derive an expansion of the energy
balance. In particular, we characterize the transformations which minimize the
energy dissipation and describe the optimal correction to the quasi-static
limit. Surprisingly, in the case of transformations between homogeneous
equilibrium states of an ideal gas, the optimal transformation is a sequence of
inhomogeneous equilibrium states.Comment: arXiv admin note: text overlap with arXiv:1404.646
Large deviation approach to non equilibrium processes in stochastic lattice gases
We present a review of recent work on the statistical mechanics of non
equilibrium processes based on the analysis of large deviations properties of
microscopic systems. Stochastic lattice gases are non trivial models of such
phenomena and can be studied rigorously providing a source of challenging
mathematical problems. In this way, some principles of wide validity have been
obtained leading to interesting physical consequences.Comment: Extended version of the lectures given by G. Jona-Lasinio at the 9th
Brazilian school of Probability, August 200
Seasonal variations in Greenland Ice Sheet motion : Inland extent and behaviour at higher elevations
Peer reviewedPreprin
The Morphospace of Consciousness
We construct a complexity-based morphospace to study systems-level properties
of conscious & intelligent systems. The axes of this space label 3 complexity
types: autonomous, cognitive & social. Given recent proposals to synthesize
consciousness, a generic complexity-based conceptualization provides a useful
framework for identifying defining features of conscious & synthetic systems.
Based on current clinical scales of consciousness that measure cognitive
awareness and wakefulness, we take a perspective on how contemporary
artificially intelligent machines & synthetically engineered life forms measure
on these scales. It turns out that awareness & wakefulness can be associated to
computational & autonomous complexity respectively. Subsequently, building on
insights from cognitive robotics, we examine the function that consciousness
serves, & argue the role of consciousness as an evolutionary game-theoretic
strategy. This makes the case for a third type of complexity for describing
consciousness: social complexity. Having identified these complexity types,
allows for a representation of both, biological & synthetic systems in a common
morphospace. A consequence of this classification is a taxonomy of possible
conscious machines. We identify four types of consciousness, based on
embodiment: (i) biological consciousness, (ii) synthetic consciousness, (iii)
group consciousness (resulting from group interactions), & (iv) simulated
consciousness (embodied by virtual agents within a simulated reality). This
taxonomy helps in the investigation of comparative signatures of consciousness
across domains, in order to highlight design principles necessary to engineer
conscious machines. This is particularly relevant in the light of recent
developments at the crossroads of cognitive neuroscience, biomedical
engineering, artificial intelligence & biomimetics.Comment: 23 pages, 3 figure
Liquid phase epitaxy and optical investigation of KYb(WO4)2 thin layers
In recent years, Yb3+ has attracted much attention as an activating ion because of its small quantum defect for laser emission from 2F5/2 to 2F7/2 at ~1.03 µm [1], which provides high efficiency and reduced heat generation. Of high practical interest is the thin-disk laser concept [2], which possesses a tremendous advantage over rod lasers because of its axial-cooling approach and consequent weak thermal lensing and good beam quality.\ud
A promising material for Yb3+ thin-disk lasers is KYb(WO4)2 (KYbW) [3]. It can be grown from high-temperature solutions [4]. Nevertheless, the growth of high-quality, single-crystalline layers with thickness in the range of the absorption length of ~13 µm at 981 nm has as yet not been reported. A suitable substrate material is KY(WO4)2 (KYW), but the relatively large differences in the thermal expansion coefficients between KYW and KYbW along the [100], [001], and especially [010] directions [5] favor low temperatures for the hetero-epitaxial growth.\ud
For the first time, we demonstrate liquid phase epitaxy (LPE) of KYbW layers. The layers were grown at start temperatures as low as 520°C, which is favorable in order to decrease the thermal stresses due to the differences in the thermal expansion coefficients of substrate and layer. Moreover, the choice of [010]-oriented substrates bypasses the large difference in the thermal expansion coefficient along the [010] direction. KY1-xYbx(WO4)2 layers with varying x = 0.03-1.00 were grown by LPE. The chloride solvent consisted of the eutectic composition [6] 24.4 mol.% KCl, 30.4 mol.% NaCl, and 42.2 mol.% CsCl. The growth temperature spanned the range from 580 to 500°C and the cooling rate was 0.67-1.00 Kh-1. Crack-free, transparent KYbW layers were grown on (010) substrates.\ud
Spectroscopic investigations have shown that the lifetime of ~250 µs measured in our LPE-grown KYbW layers is dominated by radiative decay and is very similar to that measured in top-seeded-solution-grown bulk samples [4]. Fast energy migration among the Yb3+ ions and energy transfer to small amounts of Tm3+ and Er3+ ions present in the YbCl3 reagent lead to visible upconversion luminescence in the layers under 981-nm excitation.\ud
\ud
[1] T.Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).\ud
[2] A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, H. Opower, Appl. Phys. B 58, 365 (1994).\ud
[3] P. Klopp, U. Griebner, V. Petrov, X. Mateos, M.A. Bursukova, M.C. Pujol, R. Solé, J. Gavaldà, M. Aguiló, F. Güell, J. Massons, T. Kirilov, F. Díaz, Appl. Phys. B 74, 185 (2002).\ud
[4] M.C. Pujol, M.A. Bursukova, F. Güell, X. Mateos, R. Solé, J. Gavaldà, M. Aguiló, J. Massons, F. Díaz, P. Klopp, U. Griebner, V. Petrov, Phys. Rev. B 65, 165121 (2002).\ud
[5] M.C. Pujol, X. Mateos, R. Solé, J. Massons, J. Gavaldà, F. Díaz, M. Aguiló, Mater. Sci. Forum 378-381, 710 (2001).\ud
[6] D. Ehrentraut, M. Pollnau, S. Kück, Appl. Phys. B 75, 59 (2002)
Minimum dissipation principle in stationary non equilibrium states
We generalize to non equilibrium states Onsager's minimum dissipation
principle. We also interpret this principle and some previous results in terms
of optimal control theory. Entropy production plays the role of the cost
necessary to drive the system to a prescribed macroscopic configuration
Macroscopic current fluctuations in stochastic lattice gases
We study current fluctuations in lattice gases in the macroscopic limit
extending the dynamic approach to density fluctuations developed in previous
articles. More precisely, we derive large deviation estimates for the
space--time fluctuations of the empirical current which include the previous
results. Large time asymptotic estimates for the fluctuations of the time
average of the current, recently established by Bodineau and Derrida, can be
derived in a more general setting. There are models where we have to modify
their estimates and some explicit examples are introduced.Comment: 4 pages, LaTeX, Changed conten
- …
