856 research outputs found

    A renormalization group model for the stick-slip behavior of faults

    Get PDF
    A fault which is treated as an array of asperities with a prescribed statistical distribution of strengths is described. For a linear array the stress is transferred to a single adjacent asperity and for a two dimensional array to three ajacent asperities. It is shown that the solutions bifurcate at a critical applied stress. At stresses less than the critical stress virtually no asperities fail on a large scale and the fault is locked. At the critical stress the solution bifurcates and asperity failure cascades away from the nucleus of failure. It is found that the stick slip behavior of most faults can be attributed to the distribution of asperities on the fault. The observation of stick slip behavior on faults rather than stable sliding, why the observed level of seismicity on a locked fault is very small, and why the stress on a fault is less than that predicted by a standard value of the coefficient of friction are outlined

    Life, Death and Preferential Attachment

    Get PDF
    Scientific communities are characterized by strong stratification. The highly skewed frequency distribution of citations of published scientific papers suggests a relatively small number of active, cited papers embedded in a sea of inactive and uncited papers. We propose an analytically soluble model which allows for the death of nodes. This model provides an excellent description of the citation distributions for live and dead papers in the SPIRES database. Further, this model suggests a novel and general mechanism for the generation of power law distributions in networks whenever the fraction of active nodes is small.Comment: 5 pages, 2 figure

    Correlations in Networks associated to Preferential Growth

    Full text link
    Combinations of random and preferential growth for both on-growing and stationary networks are studied and a hierarchical topology is observed. Thus for real world scale-free networks which do not exhibit hierarchical features preferential growth is probably not the main ingredient in the growth process. An example of such real world networks includes the protein-protein interaction network in yeast, which exhibits pronounced anti-hierarchical features.Comment: 4 pages, 4 figure

    Live and Dead Nodes

    Get PDF
    In this paper, we explore the consequences of a distinction between `live' and `dead' network nodes; `live' nodes are able to acquire new links whereas `dead' nodes are static. We develop an analytically soluble growing network model incorporating this distinction and show that it can provide a quantitative description of the empirical network composed of citations and references (in- and out-links) between papers (nodes) in the SPIRES database of scientific papers in high energy physics. We also demonstrate that the death mechanism alone can result in power law degree distributions for the resulting network.Comment: 12 pages, 3 figures. To be published in Computational and Mathematical Organization Theor

    Runaway Events Dominate the Heavy Tail of Citation Distributions

    Full text link
    Statistical distributions with heavy tails are ubiquitous in natural and social phenomena. Since the entries in heavy tail have disproportional significance, the knowledge of its exact shape is very important. Citations of scientific papers form one of the best-known heavy tail distributions. Even in this case there is a considerable debate whether citation distribution follows the log-normal or power-law fit. The goal of our study is to solve this debate by measuring citation distribution for a very large and homogeneous data. We measured citation distribution for 418,438 Physics papers published in 1980-1989 and cited by 2008. While the log-normal fit deviates too strong from the data, the discrete power-law function with the exponent γ=3.15\gamma=3.15 does better and fits 99.955% of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a dramatic "runaway" behavior. The onset of the runaway regime is revealed macroscopically as the paper garners 1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict this behavior in advance.Comment: 6 pages, 5 Figure

    The Geography of Scientific Productivity: Scaling in U.S. Computer Science

    Full text link
    Here we extract the geographical addresses of authors in the Citeseer database of computer science papers. We show that the productivity of research centres in the United States follows a power-law regime, apart from the most productive centres for which we do not have enough data to reach definite conclusions. To investigate the spatial distribution of computer science research centres in the United States, we compute the two-point correlation function of the spatial point process and show that the observed power-laws do not disappear even when we change the physical representation from geographical space to cartogram space. Our work suggests that the effect of physical location poses a challenge to ongoing efforts to develop realistic models of scientific productivity. We propose that the introduction of a fine scale geography may lead to more sophisticated indicators of scientific output.Comment: 6 pages, 3 figures; minor change

    A quantitative analysis of measures of quality in science

    Get PDF
    Condensing the work of any academic scientist into a one-dimensional measure of scientific quality is a difficult problem. Here, we employ Bayesian statistics to analyze several different measures of quality. Specifically, we determine each measure's ability to discriminate between scientific authors. Using scaling arguments, we demonstrate that the best of these measures require approximately 50 papers to draw conclusions regarding long term scientific performance with usefully small statistical uncertainties. Further, the approach described here permits the value-free (i.e., statistical) comparison of scientists working in distinct areas of science.Comment: 11 pages, 8 figures, 4 table

    Characterizing Interdisciplinarity of Researchers and Research Topics Using Web Search Engines

    Get PDF
    Researchers' networks have been subject to active modeling and analysis. Earlier literature mostly focused on citation or co-authorship networks reconstructed from annotated scientific publication databases, which have several limitations. Recently, general-purpose web search engines have also been utilized to collect information about social networks. Here we reconstructed, using web search engines, a network representing the relatedness of researchers to their peers as well as to various research topics. Relatedness between researchers and research topics was characterized by visibility boost-increase of a researcher's visibility by focusing on a particular topic. It was observed that researchers who had high visibility boosts by the same research topic tended to be close to each other in their network. We calculated correlations between visibility boosts by research topics and researchers' interdisciplinarity at individual level (diversity of topics related to the researcher) and at social level (his/her centrality in the researchers' network). We found that visibility boosts by certain research topics were positively correlated with researchers' individual-level interdisciplinarity despite their negative correlations with the general popularity of researchers. It was also found that visibility boosts by network-related topics had positive correlations with researchers' social-level interdisciplinarity. Research topics' correlations with researchers' individual- and social-level interdisciplinarities were found to be nearly independent from each other. These findings suggest that the notion of "interdisciplinarity" of a researcher should be understood as a multi-dimensional concept that should be evaluated using multiple assessment means.Comment: 20 pages, 7 figures. Accepted for publication in PLoS On

    Emergence d’une spécialité scientifique dans l’espace - La réparation de l’ADN

    Get PDF
    International audienceIn the study of science, the specialty is seen as the ideal level of analysis to understand the genesis and development of scientific communities. This article uses bibliometric data to analyze the emergence of DNA repair by testing a hybrid method to identify the specialty’s appearance in geographical space by focusing on the geographical trajectories of the pioneers in this field. We try to identify the professional mobility of researchers using these bibliometric data, and if possible to highlight the structural networks of places during the emergence stage of the specialty. These networks determine places as much as they are built by individual trajectories. In this way, we try to make a place for the geography of science in the field of social studies of science.Dans l’étude des sciences, la spécialité est perçue comme le niveau d’analyse idéal pour comprendre la genèse et le développement des collectifs scientifiques. Cet article utilise des données bibliométriques pour analyser l’émergence de la Réparation de l’ADN en expérimentant une méthode mixte pour repérer son apparition dans l’espace géographique. En nous concentrant sur les trajectoires géographiques de pionniers dans cedomaine, nous tâchons de repérer leur mobilité professionnelle à l’aide de données bibliométriques dans la perspective de mettre en évidence les réseaux de lieux structurants dans la phase d’émergence de la spécialité. Ces réseaux de lieux déterminent autant qu’ils sont construits par les trajectoires individuelles. Nous essayons ainsi de faire une place à la géographie des sciences dans le domaine des études sociales des sciences

    COVID-19 publications: Database coverage, citations, readers, tweets, news, Facebook walls, Reddit posts

    Get PDF
    © 2020 The Authors. Published by MIT Press. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1162/qss_a_00066The COVID-19 pandemic requires a fast response from researchers to help address biological, medical and public health issues to minimize its impact. In this rapidly evolving context, scholars, professionals and the public may need to quickly identify important new studies. In response, this paper assesses the coverage of scholarly databases and impact indicators during 21 March to 18 April 2020. The rapidly increasing volume of research, is particularly accessible through Dimensions, and less through Scopus, the Web of Science, and PubMed. Google Scholar’s results included many false matches. A few COVID-19 papers from the 21,395 in Dimensions were already highly cited, with substantial news and social media attention. For this topic, in contrast to previous studies, there seems to be a high degree of convergence between articles shared in the social web and citation counts, at least in the short term. In particular, articles that are extensively tweeted on the day first indexed are likely to be highly read and relatively highly cited three weeks later. Researchers needing wide scope literature searches (rather than health focused PubMed or medRxiv searches) should start with Dimensions (or Google Scholar) and can use tweet and Mendeley reader counts as indicators of likely importance
    corecore