327 research outputs found
Development of qualification test program for microelectronic devices Final report, 1 Nov. 1968 - 3 Jul. 1969
Qualification test program for digital monolithic integrated circuit device
4D STEM: high efficiency phase contrast imaging using a fast pixelated detector
Phase contrast imaging is widely used for imaging beam sensitive and weak phase objects in electron microscopy. In this work we demonstrate the achievement of high efficient phase contrast imaging in STEM using the pnCCD, a fast direct electron pixelated detector, which records the diffraction patterns at every probe position with a speed of 1000 to 4000 frames per second, forming a 4D STEM dataset simultaneously with the incoherent Z-contrast imaging. Ptychographic phase reconstruction has been applied and the obtained complex transmission function reveals the phase of the specimen. The results using GaN and Ti, Nd- doped BiFeO3 show that this imaging mode is especially powerful for imaging light elements in the presence of much heavier elements
Detailed design of a quiet high flow fan
A single stage fan was designed to demonstrate the noise abatement properties of near-sonic inlet flow and long-chord stator vanes for the reduction of both upstream and downstream propagated fan source noise. It is designed to produce a pressure ratio of 1.653:1 with an adiabatic efficiency of 83.9%. The fan has a 508 mm inlet diameter with a hub/tip ratio of 0.426 and a design tip speed of 533.4 m/sec. The design inlet specific flow rate is 219.71 kg/sec sq m and there are 10 tandem stator vanes with a combined aspect ratio of 0.54
Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope
Arch filament systems occur in active sunspot groups, where a fibril
structure connects areas of opposite magnetic polarity, in contrast to active
region filaments that follow the polarity inversion line. We used the GREGOR
Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral
lines Si I 1082.7 nm, He I 1083.0 nm, and Ca I 1083.9 nm. We focus on the
near-infrared calcium line to investigate the photospheric magnetic field and
velocities, and use the line core intensities and velocities of the helium line
to study the chromospheric plasma. The individual fibrils of the arch filament
system connect the sunspot with patches of magnetic polarity opposite to that
of the spot. These patches do not necessarily coincide with pores, where the
magnetic field is strongest. Instead, areas are preferred not far from the
polarity inversion line. These areas exhibit photospheric downflows of moderate
velocity, but significantly higher downflows of up to 30 km/s in the
chromospheric helium line. Our findings can be explained with new emerging flux
where the matter flows downward along the fieldlines of rising flux tubes, in
agreement with earlier results.Comment: Proceedings 12th Potsdam Thinkshop to appear in Astronomische
Nachrichte
A retrospective of the GREGOR solar telescope in scientific literature
In this review, we look back upon the literature, which had the GREGOR solar
telescope project as its subject including science cases, telescope subsystems,
and post-focus instruments. The articles date back to the year 2000, when the
initial concepts for a new solar telescope on Tenerife were first presented at
scientific meetings. This comprehensive bibliography contains literature until
the year 2012, i.e., the final stages of commissioning and science
verification. Taking stock of the various publications in peer-reviewed
journals and conference proceedings also provides the "historical" context for
the reference articles in this special issue of Astronomische
Nachrichten/Astronomical Notes.Comment: 6 pages, 2 color figures, this is the pre-peer reviewed version of
Denker et al. 2012, Astron. Nachr. 333, 81
Magnetic fields of opposite polarity in sunspot penumbrae
Context. A significant part of the penumbral magnetic field returns below the
surface in the very deep photosphere. For lines in the visible, a large portion
of this return field can only be detected indirectly by studying its imprints
on strongly asymmetric and three-lobed Stokes V profiles. Infrared lines probe
a narrow layer in the very deep photosphere, providing the possibility of
directly measuring the orientation of magnetic fields close to the solar
surface.
Aims. We study the topology of the penumbral magnetic field in the lower
photosphere, focusing on regions where it returns below the surface.
Methods. We analyzed 71 spectropolarimetric datasets from Hinode and from the
GREGOR infrared spectrograph. We inferred the quality and polarimetric accuracy
of the infrared data after applying several reduction steps. Techniques of
spectral inversion and forward synthesis were used to test the detection
algorithm. We compared the morphology and the fractional penumbral area covered
by reversed-polarity and three-lobed Stokes V profiles for sunspots at disk
center. We determined the amount of reversed-polarity and three-lobed Stokes V
profiles in visible and infrared data of sunspots at various heliocentric
angles. From the results, we computed center-to-limb variation curves, which
were interpreted in the context of existing penumbral models.
Results. Observations in visible and near-infrared spectral lines yield a
significant difference in the penumbral area covered by magnetic fields of
opposite polarity. In the infrared, the number of reversed-polarity Stokes V
profiles is smaller by a factor of two than in the visible. For three-lobed
Stokes V profiles the numbers differ by up to an order of magnitude.Comment: 11 pages 10 figures plus appendix (2 pages 3 figures). Accepted as
part of the A&A special issue on the GREGOR solar telescop
Environmental Costs of Government-Sponsored Agrarian Settlements in Brazilian Amazonia
Brazil has presided over the most comprehensive agrarian reform frontier colonization program on Earth, in which ~1.2 million settlers have been translocated by successive governments since the 1970's, mostly into forested hinterlands of Brazilian Amazonia. These settlements encompass 5.3% of this ~5 million km2 region, but have contributed with 13.5% of all land conversion into agropastoral land uses. The Brazilian Federal Agrarian Agency (INCRA) has repeatedly claimed that deforestation in these areas largely predates the sanctioned arrival of new settlers. Here, we quantify rates of natural vegetation conversion across 1911 agrarian settlements allocated to 568 Amazonian counties and compare fire incidence and deforestation rates before and after the official occupation of settlements by migrant farmers. The timing and spatial distribution of deforestation and fires in our analysis provides irrefutable chronological and spatially explicit evidence of agropastoral conversion both inside and immediately outside agrarian settlements over the last decade. Deforestation rates are strongly related to local human population density and road access to regional markets. Agrarian settlements consistently accelerated rates of deforestation and fires, compared to neighboring areas outside settlements, but within the same counties. Relocated smallholders allocated to forest areas undoubtedly operate as pivotal agents of deforestation, and most of the forest clearance occurs in the aftermath of government-induced migration
Photospheric Magnetic Fields of the Trailing Sunspots in Active Region NOAA 12396
The solar magnetic field is responsible for all aspects of solar activity.
Sunspots are the main manifestation of the ensuing solar activity. Combining
high-resolution and synoptic observations has the ambition to provide a
comprehensive description of the sunspot growth and decay processes. Active
region NOAA 12396 emerged on 2015 August 3 and was observed three days later
with the 1.5-meter GREGOR solar telescope on 2015 August 6. High-resolution
spectropolarimetric data from the GREGOR Infrared Spectrograph (GRIS) are
obtained in the photospheric Si I 1082.7 nm and Ca I 1083.9
nm lines, together with the chromospheric He I 1083.0 nm triplet.
These near-infrared spectropolarimetric observations were complemented by
synoptic line-of-sight magnetograms and continuum images of the Helioseismic
and Magnetic Imager (HMI) and EUV images of the Atmospheric Imaging Assembly
(AIA) on board the Solar Dynamics Observatory (SDO).Comment: 4 pages, 2 figures, to be published in "Solar Polarization Workshop
8", ASP Proceedings, Luca Belluzzi (eds.
- …
