16,676 research outputs found
Dissecting saving dynamics: measuring wealth, precautionary, and credit effects
We argue that the U.S. personal saving rate’s long stability (1960s–1980s), subsequent steady decline (1980s–2007), and recent substantial rise (2008–2011) can be interpreted using a parsimonious ‘buffer stock’ model of consumption in the presence of labor income uncertainty and credit constraints. Saving in the model is affected by the gap between ‘target’ and actual wealth, with the target determined by credit conditions and uncertainty. An estimated structural version of the model suggests that increased credit availability accounts for most of the long-term saving decline, while fluctuations in wealth and uncertainty capture the bulk of the business-cycle variation
International evidence on sticky consumption growth
We estimate the degree of 'stickiness' in aggregate consumption growth (sometimes interpreted as reflecting consumption habits) for thirteen advanced economies. We find that, after controlling for measurement error, consumption growth has a high degree of autocorrelation, with a stickiness parameter of about 0.7 on average across countries. The sticky-consumption-growth model outperforms the random walk model of Hall (1978), and typically fits the data better than the popular Campbell and Mankiw (1989) model. In several countries, the sticky-consumption-growth and Campbell-Mankiw models work about equally well
Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence
Enteric and sympathetic neurons have previously been proposed to be lineally related. We present independent lines of evidence that suggest that enteric neurons arise from at least two lineages, only one of which expresses markers in common with sympathoadrenal cells. In the rat, sympathoadrenal markers are expressed, in the same order as in sympathetic neurons, by a subset of enteric neuronal precursors, which also transiently express tyrosine hydroxylase. If this precursor pool is eliminated in vitro by complement-mediated lysis, enteric neurons continue to develop; however, none of these are serotonergic. In the mouse, the Mash-1−/− mutation, which eliminates sympathetic neurons, also prevents the development of enteric serotonergic neurons. Other enteric neuronal populations, however, including those that contain calcitonin gene related peptide are present. Enteric tyrosine hydroxylase-containing cells co-express Mash-1 and are eliminated by the Mash-1−/− mutation, consistent with the idea that in the mouse, as in the rat, these precursors generate serotonergic neurons. Serotonergic neurons are generated early in development, while calcitonin gene related peptide-containing enteric neurons are generated much later. These data suggest that enteric neurons are derived from at least two progenitor lineages. One transiently expresses sympathoadrenal markers, is Mash-1-dependent, and generates early-born enteric neurons, some of which are serotonergic. The other is Mash-1-independent, does not express sympathoadrenal markers, and generates late-born enteric neurons, some of which contain calcitonin gene related peptide
A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images
Template estimation plays a crucial role in computational anatomy since it
provides reference frames for performing statistical analysis of the underlying
anatomical population variability. While building models for template
estimation, variability in sites and image acquisition protocols need to be
accounted for. To account for such variability, we propose a generative
template estimation model that makes simultaneous inference of both bias fields
in individual images, deformations for image registration, and variance
hyperparameters. In contrast, existing maximum a posterori based methods need
to rely on either bias-invariant similarity measures or robust image
normalization. Results on synthetic and real brain MRI images demonstrate the
capability of the model to capture heterogeneity in intensities and provide a
reliable template estimation from registration
Pregnancy-associated breast cancer - Special features in diagnosis and treatment
For obvious psychological reasons it is difficult to associate pregnancy - a life-giving period of our existence with life-threatening malignancies. Symptoms pointing to malignancy are often ignored by both patients and physicians, and this, together with the greater difficulty of diagnostic imaging, probably results in the proven delay in the detection of breast cancers during pregnancy. The diagnosis and treatment of breast cancer are becoming more and more important, as the fulfillment of the desire to have children is increasingly postponed until a later age associated with a higher risk of carcinoma, and improved cure rates of solid tumors no longer exclude subsequent pregnancies. The following article summarizes the special features of the diagnosis and primary therapy of pregnancy-associated breast cancer with particular consideration of cytostatic therapy
Collisional effects in the formation of cold guided beams of polar molecules
High fluxes of cold polar molecules are efficiently produced by electric
guiding and velocity filtering. Here, we investigate different aspects of the
beam formation. Variations of the source parameters such as density and
temperature result in characteristic changes in the guided beam. These are
observed in the velocity distribution of the guided molecules as well as in the
dependence of the signal of guided molecules on the trapping electric field. A
model taking into account velocity-dependent collisional losses of cold
molecules in the region close to the nozzle accurately reproduces this
behavior. This clarifies an open question on the parameter dependence of the
detected signal and gives a more detailed understanding of the velocity
filtering and guiding process
- …
