9,823 research outputs found
Depth-Resolved Composition and Electronic Structure of Buried Layers and Interfaces in a LaNiO/SrTiO Superlattice from Soft- and Hard- X-ray Standing-Wave Angle-Resolved Photoemission
LaNiO (LNO) is an intriguing member of the rare-earth nickelates in
exhibiting a metal-insulator transition for a critical film thickness of about
4 unit cells [Son et al., Appl. Phys. Lett. 96, 062114 (2010)]; however, such
thin films also show a transition to a metallic state in superlattices with
SrTiO (STO) [Son et al., Appl. Phys. Lett. 97, 202109 (2010)]. In order to
better understand this transition, we have studied a strained LNO/STO
superlattice with 10 repeats of [4 unit-cell LNO/3 unit-cell STO] grown on an
(LaAlO)(SrAlTaO) substrate using soft x-ray
standing-wave-excited angle-resolved photoemission (SWARPES), together with
soft- and hard- x-ray photoemission measurements of core levels and
densities-of-states valence spectra. The experimental results are compared with
state-of-the-art density functional theory (DFT) calculations of band
structures and densities of states. Using core-level rocking curves and x-ray
optical modeling to assess the position of the standing wave, SWARPES
measurements are carried out for various incidence angles and used to determine
interface-specific changes in momentum-resolved electronic structure. We
further show that the momentum-resolved behavior of the Ni 3d eg and t2g states
near the Fermi level, as well as those at the bottom of the valence bands, is
very similar to recently published SWARPES results for a related
LaSrMnO/SrTiO superlattice that was studied using the
same technique (Gray et al., Europhysics Letters 104, 17004 (2013)), which
further validates this experimental approach and our conclusions. Our
conclusions are also supported in several ways by comparison to DFT
calculations for the parent materials and the superlattice, including
layer-resolved density-of-states results
Hall viscosity from gauge/gravity duality
In (2+1)-dimensional systems with broken parity, there exists yet another
transport coefficient, appearing at the same order as the shear viscosity in
the hydrodynamic derivative expansion. In condensed matter physics, it is
referred to as "Hall viscosity". We consider a simple holographic realization
of a (2+1)-dimensional isotropic fluid with broken spatial parity. Using
techniques of fluid/gravity correspondence, we uncover that the holographic
fluid possesses a nonzero Hall viscosity, whose value only depends on the
near-horizon region of the background. We also write down a Kubo's formula for
the Hall viscosity. We confirm our results by directly computing the Hall
viscosity using the formula.Comment: 12 page
Spin-Polarized Electron Transport at Ferromagnet/Semiconductor Schottky Contacts
We theoretically investigate electron spin injection and spin-polarization
sensitive current detection at Schottky contacts between a ferromagnetic metal
and an n-type or p-type semiconductor. We use spin-dependent continuity
equations and transport equations at the drift-diffusion level of
approximation. Spin-polarized electron current and density in the semiconductor
are described for four scenarios corresponding to the injection or the
collection of spin polarized electrons at Schottky contacts to n-type or p-type
semiconductors. The transport properties of the interface are described by a
spin-dependent interface resistance, resulting from an interfacial tunneling
region. The spin-dependent interface resistance is crucial for achieving spin
injection or spin polarization sensitivity in these configurations. We find
that the depletion region resulting from Schottky barrier formation at a
metal/semiconductor interface is detrimental to both spin injection and spin
detection. However, the depletion region can be tailored using a doping density
profile to minimize these deleterious effects. For example, a heavily doped
region near the interface, such as a delta-doped layer, can be used to form a
sharp potential profile through which electrons tunnel to reduce the effective
Schottky energy barrier that determines the magnitude of the depletion region.
The model results indicate that efficient spin-injection and spin-polarization
detection can be achieved in properly designed structures and can serve as a
guide for the structure design.Comment: RevTex
Basic obstacle for electrical spin-injection from a ferromagnetic metal into a diffusive semiconductor
We have calculated the spin-polarization effects of a current in a two
dimensional electron gas which is contacted by two ferromagnetic metals. In the
purely diffusive regime, the current may indeed be spin-polarized. However, for
a typical device geometry the degree of spin-polarization of the current is
limited to less than 0.1%, only. The change in device resistance for parallel
and antiparallel magnetization of the contacts is up to quadratically smaller,
and will thus be difficult to detect.Comment: Revtex, 4 pages, 3 figures (eps), Definition of spin pilarization
changed to standard definition in GMR, some straight forward algebra removed.
To appear as PRB Rap. Comm. August 15t
Schr\"odinger Deformations of AdS_3 x S^3
We study Schr\"odinger invariant deformations of the AdS_3 x S^3 x T^4 (or
K3) solution of IIB supergravity and find a large class of solutions with
integer and half-integer dynamical exponents. We analyze the supersymmetries
preserved by our solutions and find an infinite number of solutions with four
supersymmetries. We study the solutions holographically and find that the dual
D1-D5 (or F1-NS5) CFT is deformed by irrelevant operators of spin one and two.Comment: 23 page
A Non-relativistic Logarithmic Conformal Field Theory from a Holographic Point of View
We study a fourth-order derivative scalar field configuration in a fixed
Lifshitz background. Using an auxiliary field we rewrite the equations of
motion as two coupled second order equations. We specialize to the limit that
the mass of the scalar field degenerates with that of the auxiliary field and
show that logarithmic modes appear. Using non-relativistic holographic methods
we calculate the two-point correlation functions of the boundary operators in
this limit and find evidence for a non-relativistic logarithmic conformal field
theory at the boundary.Comment: 17 pages, v2 : refs. adde
Mechanisms of spin-polarized current-driven magnetization switching
The mechanisms of the magnetization switching of magnetic multilayers driven
by a current are studied by including exchange interaction between local
moments and spin accumulation of conduction electrons. It is found that this
exchange interaction leads to two additional terms in the
Landau-Lifshitz-Gilbert equation: an effective field and a spin torque. Both
terms are proportional to the transverse spin accumulation and have comparable
magnitudes
Holonomic quantum computing in symmetry-protected ground states of spin chains
While solid-state devices offer naturally reliable hardware for modern
classical computers, thus far quantum information processors resemble vacuum
tube computers in being neither reliable nor scalable. Strongly correlated many
body states stabilized in topologically ordered matter offer the possibility of
naturally fault tolerant computing, but are both challenging to engineer and
coherently control and cannot be easily adapted to different physical
platforms. We propose an architecture which achieves some of the robustness
properties of topological models but with a drastically simpler construction.
Quantum information is stored in the symmetry-protected degenerate ground
states of spin-1 chains, while quantum gates are performed by adiabatic
non-Abelian holonomies using only single-site fields and nearest-neighbor
couplings. Gate operations respect the symmetry, and so inherit some protection
from noise and disorder from the symmetry-protected ground states.Comment: 19 pages, 4 figures. v2: published versio
Real-time gauge/gravity duality: Prescription, Renormalization and Examples
We present a comprehensive analysis of the prescription we recently put
forward for the computation of real-time correlation functions using
gauge/gravity duality. The prescription is valid for any holographic
supergravity background and it naturally maps initial and final data in the
bulk to initial and final states or density matrices in the field theory. We
show in detail how the technique of holographic renormalization can be applied
in this setting and we provide numerous illustrative examples, including the
computation of time-ordered, Wightman and retarded 2-point functions in
Poincare and global coordinates, thermal correlators and higher-point
functions.Comment: 85 pages, 13 figures; v2: added comments and reference
Probe Branes, Time-dependent Couplings and Thermalization in AdS/CFT
We present holographic descriptions of thermalization in conformal field
theories using probe D-branes in AdS X S space-times. We find that the induced
metrics on Dp-brane worldvolumes which are rotating in an internal sphere
direction have horizons with characteristic Hawking temperatures even if there
is no black hole in the bulk AdS. The AdS/CFT correspondence applied to such
systems indeed reveals thermal properties such as Brownian motions and AC
conductivities in the dual conformal field theories. We also use this framework
to holographically analyze time-dependent systems undergoing a quantum quench,
where parameters in quantum field theories, such as a mass or a coupling
constant, are suddenly changed. We confirm that this leads to thermal behavior
by demonstrating the formation of apparent horizons in the induced metric after
a certain time.Comment: LaTeX, 47 pages, 14 figures; Typos corrected and references added
(v2); minor corrections, references added(v3
- …
