458 research outputs found
Lognormality of Rates and Term Structure Models
A term structure model with lognormal type volatility structure is proposed. The Heath, Jarrow and Morton (HJM) framework, coupled with the theory of stochastic evolution equations in infinite dimensions, is used to show that the resulting rates are well defined (they do not explode) and remain positive. They are bounded from below and above by lognormal processes. The model can be used to price and hedge caps, swaptions and other interest rate and currency derivatives including the Eurodollar futures contract, which requires integrability of one over zero coupon bond. This extends results obtained by Sandmann and Sondermann (1993), (1994) for Markovian lognormal short rates to (non-Markovian) lognormal forward rates.Term structure of interest rates, lognormal volatility structure, Heath, Jarrow and Morton models.
Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates
We derive a unified model which gives closed form solutions for caps and floors written on interest rates as well as puts and calls written on zero-coupon bonds. The crucial assumption is that forward rates with a compounding period that matches the contract, which we want to price, is log-normally distributed. Moreover, this assumption is shown to be consistent with the Heath-Jarrow-Morton model for a specific choice of volatility.Log-normal, nominal-compounding rates, Heath-Jarrow- Morton model
Unusual light spectra from a two-level atom in squeezed vacuum
We investigate the interaction of an atom with a multi-channel squeezed
vacuum. It turns out that the light coming out in a particular channel can have
anomalous spectral properties, among them asymmetry of the spectrum, absence of
the central peak as well as central hole burning for particular parameters. As
an example plane-wave squeezing is considered. In this case the above phenomena
can occur for the light spectra in certain directions. In the total spectrum
these phenomena are washed out.Comment: 16 pages, LaTeX, 3 figures (included via epsf
Wavelength-Scale Imaging of Trapped Ions using a Phase Fresnel lens
A microfabricated phase Fresnel lens was used to image ytterbium ions trapped
in a radio frequency Paul trap. The ions were laser cooled close to the Doppler
limit on the 369.5 nm transition, reducing the ion motion so that each ion
formed a near point source. By detecting the ion fluorescence on the same
transition, near diffraction limited imaging with spot sizes of below 440 nm
(FWHM) was achieved. This is the first demonstration of imaging trapped ions
with a resolution on the order of the transition wavelength.Comment: 8 pages, 3 figure
Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems
Within the framework of probability distributions on projective Hilbert space
a scheme for the calculation of multitime correlation functions is developed.
The starting point is the Markovian stochastic wave function description of an
open quantum system coupled to an environment consisting of an ensemble of
harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix
elements of reduced Heisenberg picture operators and general time-ordered
correlation functions can be expressed by time-symmetric expectation values of
extended operators in a doubled Hilbert space. This representation allows the
construction of a stochastic process in the doubled Hilbert space which enables
the determination of arbitrary matrix elements and correlation functions. The
numerical efficiency of the resulting stochastic simulation algorithm is
investigated and compared with an alternative Monte Carlo wave function method
proposed first by Dalibard et al. [Phys. Rev. Lett. {\bf 68}, 580 (1992)]. By
means of a standard example the suggested algorithm is shown to be more
efficient numerically and to converge faster. Finally, some specific examples
from quantum optics are presented in order to illustrate the proposed method,
such as the coupling of a system to a vacuum, a squeezed vacuum within a finite
solid angle, and a thermal mixture of coherent states.Comment: RevTex, 19 pages, 3 figures, uses multico
Generation of a wave packet tailored to efficient free space excitation of a single atom
We demonstrate the generation of an optical dipole wave suitable for the
process of efficiently coupling single quanta of light and matter in free
space. We employ a parabolic mirror for the conversion of a transverse beam
mode to a focused dipole wave and show the required spatial and temporal
shaping of the mode incident onto the mirror. The results include a proof of
principle correction of the parabolic mirror's aberrations. For the application
of exciting an atom with a single photon pulse we demonstrate the creation of a
suitable temporal pulse envelope. We infer coupling strengths of 89% and
success probabilities of up to 87% for the application of exciting a single
atom for the current experimental parameters.Comment: to be published in Europ. Phys. J.
Heralded single photon absorption by a single atom
The emission and absorption of single photons by single atomic particles is a
fundamental limit of matter-light interaction, manifesting its quantum
mechanical nature. At the same time, as a controlled process it is a key
enabling tool for quantum technologies, such as quantum optical information
technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission
and absorption will allow implementing quantum networking scenarios [1, 7, 8,
9], where photonic communication of quantum information is interfaced with its
local processing in atoms. In studies of single-photon emission, recent
progress includes control of the shape, bandwidth, frequency, and polarization
of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the
demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption
of a single photon by a single atom is much less investigated; proposals exist
but only very preliminary steps have been taken experimentally such as
detecting the attenuation and phase shift of a weak laser beam by a single atom
[21, 22], and designing an optical system that covers a large fraction of the
full solid angle [23, 24, 25]. Here we report the interaction of single
heralded photons with a single trapped atom. We find strong correlations of the
detection of a heralding photon with a change in the quantum state of the atom
marking absorption of the quantum-correlated heralded photon. In coupling a
single absorber with a quantum light source, our experiment demonstrates
previously unexplored matter-light interaction, while opening up new avenues
towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
Deterministic polarization chaos from a laser diode
Fifty years after the invention of the laser diode and fourty years after the
report of the butterfly effect - i.e. the unpredictability of deterministic
chaos, it is said that a laser diode behaves like a damped nonlinear
oscillator. Hence no chaos can be generated unless with additional forcing or
parameter modulation. Here we report the first counter-example of a
free-running laser diode generating chaos. The underlying physics is a
nonlinear coupling between two elliptically polarized modes in a
vertical-cavity surface-emitting laser. We identify chaos in experimental
time-series and show theoretically the bifurcations leading to single- and
double-scroll attractors with characteristics similar to Lorenz chaos. The
reported polarization chaos resembles at first sight a noise-driven mode
hopping but shows opposite statistical properties. Our findings open up new
research areas that combine the high speed performances of microcavity lasers
with controllable and integrated sources of optical chaos.Comment: 13 pages, 5 figure
Simulated dynamics of optically pumped dilute nitride 1300 nm spin vertical-cavity surface-emitting lasers
The authors report a theoretical analysis of optically pumped 1300 nm dilute nitride spin-polarised vertical-cavity surface-emitting lasers (VCSELs) using the spin-flip model to determine the regions of stability and instability. The dependence of the output polarisation ellipticity on that of the pump is investigated, and the results are presented in twodimensional contour maps of the pump polarisation against the magnitude of the optical pump. Rich dynamics and various forms of oscillatory behaviour causing self-sustained oscillations in the polarisation of the spin-VCSEL subject to continuouswave pumping have been found because of the competition of the spin-flip processes and birefringence. The authors also reveal the importance of considering both the birefringence rate and the linewidth enhancement factor when engineering a device for high-frequency applications. A very good agreement is found with the experimental results reported by the authors' group. © The Institution of Engineering and Technology 2014
Placemaking in action: Factors that support or obstruct the development of urban community gardens
The paper examines factors that support or obstruct the development of urban community garden projects. It combines a systematic scholarly literature review with empirical research from case studies located in New Zealand and Germany. The findings are discussed against the backdrop of placemaking processes: urban community gardens are valuable platforms to observe space-to-place transformations. Following a social-constructionist approach, literature-informed enablers and barriers for the development of urban community gardens are analysed against perceived notions informed by local interviewees with regard to their biophysical and technical, socio-cultural and economic, and political and administrative dimensions. These dimensions are incorporated into a systematic and comprehensive category system. This approach helps observe how the essential biophysical-material base of the projects is overlaid with socio-cultural factors and shaped by governmental or administrative regulations. Perceptual differences become evident and are discussed through the lens of different actors
- …
