1,080 research outputs found

    Exterior Differentials in Superspace and Poisson Brackets of Diverse Grassmann Parities

    Get PDF
    It is shown that two definitions for the exterior differential in superspace, giving the same exterior calculus, when applied to the Poisson bracket lead to the different results. Examples of the even and odd linear brackets, corresponding to semi-simple Lie groups, are given and their natural connection with BRST and anti-BRST charges is indicated.Comment: 5 pages, LATEX 2.09. The talk at the 9th International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY'01, JINR, Dubna, Russia, 11-17 June, 2001). To be published in the Proceedings of this Conference. Correction of misprint

    Degenerate Odd Poisson Bracket on Grassmann Variables

    Get PDF
    A linear degenerate odd Poisson bracket (antibracket) realized solely on Grassmann variables is presented. It is revealed that this bracket has at once three nilpotent Δ\Delta-like differential operators of the first, the second and the third orders with respect to the Grassmann derivatives. It is shown that these Δ\Delta-like operators together with the Grassmann-odd nilpotent Casimir function of this bracket form a finite-dimensional Lie superalgebra.Comment: 5 pages, LATEX. Corrections of misprints. The relation (23) is adde

    Hodge Duality Operation And Its Physical Applications On Supermanifolds

    Full text link
    An appropriate definition of the Hodge duality \star operation on any arbitrary dimensional supermanifold has been a long-standing problem. We define a working rule for the Hodge duality \star operation on the (2+2)(2 + 2)-dimensional supermanifold parametrized by a couple of even (bosonic) spacetime variables xμ(μ=0,1)x^\mu (\mu = 0, 1) and a couple of Grassmannian (odd) variables θ\theta and θˉ\bar\theta of the Grassmann algebra. The Minkowski spacetime manifold, hidden in the supermanifold and parametrized by xμ(μ=0,1)x^\mu (\mu = 0, 1), is chosen to be a flat manifold on which a two (1+1)(1 + 1)-dimensional (2D) free Abelian gauge theory, taken as a prototype field theoretical model, is defined. We demonstrate the applications of the above definition (and its further generalization) for the discussion of the (anti-)co-BRST symmetries that exist for the field theoretical models of 2D- (and 4D) free Abelian gauge theories considered on the four (2+2)(2 + 2)- (and six (4+2)(4 + 2))-dimensional supermanifolds, respectively.Comment: LaTeX file, 25 pages, Journal-versio

    Incontinence-specific quality of life measures used in trials of treatments for female urinary incontinence: a systematic review.

    Get PDF
    This systematic review examined the use of incontinence-specific QOL measures in clinical trials of female incontinence treatments, and systematically evaluated their quality using a standard checklist. Of 61 trials included in the review, 58 (95.1%) used an incontinence-specific QOL measure. The most commonly used were IIQ (19 papers), I-QoL (12 papers) and UDI (9 papers). Eleven papers (18.0%) used measures which were not referenced or were developed specifically for the study. The eight QOL measures identified had good clinical face validity and measurement properties. We advise researchers to evaluate carefully the needs of their specific study, and select the QOL measure that is most appropriate in terms of validity, utility and relevance, and discourage the development of new measures. Until better evidence is available on the validity and comparability of measures, we recommend that researchers consider using IIQ or I-QOL with or without UDI in trials of incontinence treatments

    (In)finite extensions of algebras from their Inonu-Wigner contractions

    Full text link
    The way to obtain massive non-relativistic states from the Poincare algebra is twofold. First, following Inonu and Wigner the Poincare algebra has to be contracted to the Galilean one. Second, the Galilean algebra is to be extended to include the central mass operator. We show that the central extension might be properly encoded in the non-relativistic contraction. In fact, any Inonu-Wigner contraction of one algebra to another, corresponds to an infinite tower of abelian extensions of the latter. The proposed method is straightforward and holds for both central and non-central extensions. Apart from the Bargmann (non-zero mass) extension of the Galilean algebra, our list of examples includes the Weyl algebra obtained from an extension of the contracted SO(3) algebra, the Carrollian (ultra-relativistic) contraction of the Poincare algebra, the exotic Newton-Hooke algebra and some others. The paper is dedicated to the memory of Laurent Houart (1967-2011).Comment: 7 pages, revtex style; v2: Minor corrections, references added; v3: Typos correcte

    Field Representations of Vector Supersymmetry

    Full text link
    We study some field representations of vector supersymmetry with superspin Y=0 and Y=1/2 and nonvanishing central charges. For Y=0, we present two multiplets composed of four spinor fields, two even and two odd, and we provide a free action for them. The main differences between these two multiplets are the way the central charge operators act and the compatibility with the Majorana reality condition on the spinors. One of the two is related to a previously studied spinning particle model. For Y=1/2, we present a multiplet composed of one even scalar, one odd vector and one even selfdual two-form, which is a truncation of a known representation of the tensor supersymmetry algebra in Euclidean spacetime. We discuss its rotation to Minkowski spacetime and provide a set of dynamical equations for it, which are however not derived from a Lagrangian. We develop a superspace formalism for vector supersymmetry with central charges and we derive our multiplets by superspace techniques. Finally, we discuss some representations with vanishing central charges.Comment: 37 page

    Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser

    Get PDF
    BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses – non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future
    corecore