994 research outputs found

    Design of a low cost earth resources system

    Get PDF
    The author has identified the following significant results. Survey results indicated that users of remote sensing data in the Southeastern U.S. were increasingly turning to digital processing techniques. All the states surveyed have had some involvement in projects using digitally processed data. Even those states which do not yet have in-house capabilities for digital processing were extremely interested in and were planning to develop such capabilities

    Computer processing of peach tree decline data

    Get PDF
    There are no author-identified significant results in this report

    Multipoint Geospace Science in 3D: The Paired Ionosphere-Thermosphere Orbiters(PITO) Mission

    Get PDF
    The science enabled by the Paired Ionosphere-Thermosphere Orbiters (PITO) mission is described and discussed. PITO has been designed to provide the concurrent, three-dimensional, multipoint measurements needed to advance geospace science while staying within a stringent resource envelope. The mission utilizes a pair of orbiting vehicles in eccentric, high-inclination, coplanar orbits. The orbits have arguments of perigee that differ by 180 degrees and are phased such that one vehicle is at perigee (~200 km) while the second is at apogee (~2000 km). Half an orbit later, the vehicles switch positions. Three complementary types of measurements exploit this scenario: local, in-situ measurements on both satellites, two-dimensional imaging from the higher satellite, and vertical sounders. The main idea is that two-dimensional context information for the low-altitude measurements is obtained by the high altitude imagers, while information on the third dimension is provided by vertical profiling. Such an observation system is capable of providing elements of global coverage, regional coverage, and concurrent coverage in three dimensions. Science goals are presented, as are the results of a detailed implementation plan, including several trade studies on key elements of the mission. The conclusion is that the mission would enable significant new understanding of the ionosphere-thermosphere system within a resource envelope that is consistent with that of NASA's Medium Explorer (MIDEX) line of science missions

    Space Environments and Spacecraft Effects Concept: Transitioning Research to Operations and Applications

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous organizations specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline organizations, a concept is presented focusing on the development of a space environment and spacecraft effects organization. This includes space climate, space weather, natural and induced space environments, and effects on spacecraft materials and systems. This space environment and spacecraft effects organization would be comprised of Technical Working Groups (TWG) focusing on, for example: a) Charged Particles (CP), b) Space Environmental Effects (SEE), and c) Interplanetary and Extraterrestrial Environments (IEE). These technical working groups will generate products and provide knowledge supporting four functional areas: design environments, environment effects, operational support, and programmatic support. The four functional areas align with phases in the program mission lifecycle and are briefly described below. Design environments are used primarily in the mission concept and design phases of a program. Environment effects focuses on the material, component, sub-system and system-level selection and the testing to verify design and operational performance. Operational support provides products based on real time or near real time space weather observations to mission operators to aid in real time and near-term decision-making. The programmatic support function maintains an interface with the numerous programs within NASA and other federal agencies to ensure that communications are well established and the needs of the programs are being met. The programmatic support function also includes working in coordination with the program in anomaly resolution and generation of lesson learned documentation. The goal of this space environment and spacecraft effects organization is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to application. Products generated by this space environments and spacecraft effects organization are suitable for use in anomaly investigations. This paper will describe the organizational structure for this space environments and spacecraft effects organization, and outline the scope of conceptual TWG's and their relationship to the functional areas

    Complex Role of Secondary Electron Emissions in Dust Grain Charging in Space Environments: Measurements on Apollo 11 and 17 Dust Grains

    Get PDF
    Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials

    Space Environments and Effects Concept: Transitioning Research to Operations and Applications

    Get PDF
    The National Aeronautics and Space Administration (NASA) is embarking on a course to expand human presence beyond Low Earth Orbit (LEO) while expanding its mission to explore the solar system. Destinations such as Near Earth Asteroids (NEA), Mars and its moons, and the outer planets are but a few of the mission targets. NASA has established numerous offices specializing in specific space environments disciplines that will serve to enable these missions. To complement these existing discipline offices, a concept focusing on the development of space environment and effects application is presented. This includes space climate, space weather, and natural and induced space environments. This space environment and effects application is composed of 4 topic areas; characterization and modeling, engineering effects, prediction and operation, and mitigation and avoidance. These topic areas are briefly described below. Characterization and modeling of space environments will primarily focus on utilization during Program mission concept, planning, and design phases. Engineering effects includes materials testing and flight experiments producing data to be used in mission planning and design phases. Prediction and operation pulls data from existing sources into decision-making tools and empirical data sets to be used during the operational phase of a mission. Mitigation and avoidance will develop techniques and strategies used in the design and operations phases of the mission. The goal of this space environment and effects application is to develop decision-making tools and engineering products to support the mission phases of mission concept through operations by focusing on transitioning research to operations. Products generated by this space environments and effects application are suitable for use in anomaly investigations. This paper will outline the four topic areas, describe the need, and discuss an organizational structure for this space environments and effects application

    Lunar Dust Charging by Secondary Electron Emission and its Complex Role in the Lunar Environment

    Get PDF
    The lunar surface is covered with a thick layer of micron/sub-micron size dust grains formed by billions of years of meteoritic impact. With virtually no atmosphere and exposed to the solar wind plasma and solar electromagnetic radiation, the lunar surface and the dust grains are electrostatically charged. The dominant charging processes include: photoelectric emissions (UV, X-rays), impact of solar wind electrons and ions, and secondary electron emissions (SEE) induced by energetic solar wind electrons. During the Apollo missions, the astronauts found the lunar dust to be extraordinarily high in its adhesive characteristics, sticking to the suits and the mechanical equipment. Electrostatically charged lunar dust is believed to be transported over long distances by the induced electric fields, as indicated by the observed dust streamers and the horizon glow [e.g., 1-3]. The hazardous effects of dust in the lunar environment are recognized to be one of the major issues that must be addressed in planning the forthcoming missions for robotic and human exploration of the Moon. Theoretical studies are being performed along with the development of analytical models and a variety of experimental investigations, to better understand the lunar dust phenomena. [e.g., 4-6]. The lunar dust is believed to be charged negatively on the lunar night-side by interaction With solar wind electrons. However, rigorous theoretical expressions for calculation of SEE yields and the sticking efficiencies of individual micron size dust grains are not yet available, and the information has to be obtained by experiment. On theoretical considerations, however, it is well recognized that SEE yields, similar to the photoelectric yields for small-size grains, would be totally different from the corresponding bulk values [e.g., 7-9]. Some theoretical models for charging of individual small spherical particles have been developed [e.g., 10], and some limited measurements on individual metallic dust grains at keV electron energies have been made [e.g., i 1]. In this paper, we present the first measurements of the secondary electron emission yields of individual micron/sub-micron size dust grains selected from sample returns of Apollo 11 and Apollo 17 missions

    Differential neutrophil activation in viral infections: Enhanced TLR-7/8-mediated CXCL8 release in asthma

    Get PDF
    © 2015 The Authors. Respirology published by Wiley Publishing Asia Pty Ltd on behalf of Asian Pacific Society of Respirology. Background and objective Respiratory viral infections are a major cause of asthma exacerbations. Neutrophils accumulate in the airways and the mechanisms that link neutrophilic inflammation, viral infections and exacerbations are unclear. This study aims to investigate anti-viral responses in neutrophils from patients with and without asthma and to investigate if neutrophils can be directly activated by respiratory viruses. Methods Neutrophils from peripheral blood from asthmatic and non-asthmatic individuals were isolated and stimulated with lipopolysaccharide (LPS) (1 μg/mL), f-met-leu-phe (fMLP) (100 nM), imiquimod (3 μg/mL), R848 (1.5 μg/mL), poly I:C (10 μg/mL), RV16 (multiplicity of infection (MOI)1), respiratory syncytial virus (RSV) (MOI1) or influenza virus (MOI1). Cell-free supernatants were collected after 1 h of neutrophil elastase (NE) and matrix metalloproteinase (MMP)-9 release, or after 24 h for CXCL8 release. Results LPS, fMLP, imiquimod and R848 stimulated the release of CXCL8, NE and MMP-9 whereas poly I:C selectively induced CXCL8 release only. R848-induced CXCL8 release was enhanced in neutrophils from asthmatics compared with non-asthmatic cells (P < 0.01). RSV triggered the release of CXCL8 and NE from neutrophils, whereas RV16 or influenza had no effect. Conclusion Neutrophils release CXCL8, NE and MMP-9 in response to viral surrogates with R848-induced CXCL8 release being specifically enhanced in asthmatic neutrophils. Toll-like receptor (TLR7/8) dysregulation may play a role in neutrophilic inflammation in viral-induced exacerbations. We aimed to investigate and compare neutrophil responses to bacterial compounds and viral mimetics as well as compare responses between people with and without asthma. We also investigated neutrophil responses to live respiratory viruses. Here we provide a novel comprehensive comparison showing differential and specific activation in innate immune cells. See Editorial, page 1
    corecore