732 research outputs found
The Cube Recurrence
We construct a combinatorial model that is described by the cube recurrence,
a nonlinear recurrence relation introduced by Propp, which generates families
of Laurent polynomials indexed by points in . In the process, we
prove several conjectures of Propp and of Fomin and Zelevinsky, and we obtain a
combinatorial interpretation for the terms of Gale-Robinson sequences. We also
indicate how the model might be used to obtain some interesting results about
perfect matchings of certain bipartite planar graphs
The dissimilarity map and representation theory of
We give another proof that -dissimilarity vectors of weighted trees are
points on the tropical Grassmanian, as conjectured by Cools, and proved by
Giraldo in response to a question of Sturmfels and Pachter. We accomplish this
by relating -dissimilarity vectors to the representation theory of Comment: 11 pages, 8 figure
Q-systems, Heaps, Paths and Cluster Positivity
We consider the cluster algebra associated to the -system for as a
tool for relating -system solutions to all possible sets of initial data. We
show that the conserved quantities of the -system are partition functions
for hard particles on particular target graphs with weights, which are
determined by the choice of initial data. This allows us to interpret the
simplest solutions of the Q-system as generating functions for Viennot's heaps
on these target graphs, and equivalently as generating functions of weighted
paths on suitable dual target graphs. The generating functions take the form of
finite continued fractions. In this setting, the cluster mutations correspond
to local rearrangements of the fractions which leave their final value
unchanged. Finally, the general solutions of the -system are interpreted as
partition functions for strongly non-intersecting families of lattice paths on
target lattices. This expresses all cluster variables as manifestly positive
Laurent polynomials of any initial data, thus proving the cluster positivity
conjecture for the -system. We also give an alternative formulation in
terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure
Computing Linear Matrix Representations of Helton-Vinnikov Curves
Helton and Vinnikov showed that every rigidly convex curve in the real plane
bounds a spectrahedron. This leads to the computational problem of explicitly
producing a symmetric (positive definite) linear determinantal representation
for a given curve. We study three approaches to this problem: an algebraic
approach via solving polynomial equations, a geometric approach via contact
curves, and an analytic approach via theta functions. These are explained,
compared, and tested experimentally for low degree instances.Comment: 19 pages, 3 figures, minor revisions; Mathematical Methods in
Systems, Optimization and Control, Birkhauser, Base
Discrete integrable systems, positivity, and continued fraction rearrangements
In this review article, we present a unified approach to solving discrete,
integrable, possibly non-commutative, dynamical systems, including the - and
-systems based on . The initial data of the systems are seen as cluster
variables in a suitable cluster algebra, and may evolve by local mutations. We
show that the solutions are always expressed as Laurent polynomials of the
initial data with non-negative integer coefficients. This is done by
reformulating the mutations of initial data as local rearrangements of
continued fractions generating some particular solutions, that preserve
manifest positivity. We also show how these techniques apply as well to
non-commutative settings.Comment: 24 pages, 2 figure
Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry
The box-ball system is an integrable cellular automaton on one dimensional
lattice. It arises from either quantum or classical integrable systems by the
procedures called crystallization and ultradiscretization, respectively. The
double origin of the integrability has endowed the box-ball system with a
variety of aspects related to Yang-Baxter integrable models in statistical
mechanics, crystal base theory in quantum groups, combinatorial Bethe ansatz,
geometric crystals, classical theory of solitons, tau functions, inverse
scattering method, action-angle variables and invariant tori in completely
integrable systems, spectral curves, tropical geometry and so forth. In this
review article, we demonstrate these integrable structures of the box-ball
system and its generalizations based on the developments in the last two
decades.Comment: 73 page
The solution of the quantum T-system for arbitrary boundary
We solve the quantum version of the -system by use of quantum
networks. The system is interpreted as a particular set of mutations of a
suitable (infinite-rank) quantum cluster algebra, and Laurent positivity
follows from our solution. As an application we re-derive the corresponding
quantum network solution to the quantum -system and generalize it to
the fully non-commutative case. We give the relation between the quantum
-system and the quantum lattice Liouville equation, which is the quantized
-system.Comment: 24 pages, 18 figure
Evaluation of marking of peer marking in oral presentation.
BACKGROUND: Peer marking is an important skill for students, helping them to understand the process of learning and assessment. This method is increasingly used in medical education, particularly in formative assessment. However, the use of peer marking in summative assessment is not widely adopted because many teachers are concerned about biased marking by students of their peers. OBJECTIVE: The aim of this study was to investigate whether marking of summative peer assessment can improve the reliability of peer marking. METHODS: In a retrospective analysis, the peer-marking results of a summative assessment of oral presentations of two cohorts of students were compared. One group of students was told that their peer marks would be assessed against a benchmark consisting of the average of examiner marks and that these scores together with the peer and examiner marks would form their final exam results. The other group of students were just informed that their final exam results would be determined based on the examiner and peer marks. RESULTS: Based on examiner marks, both groups of students performed similarly in their summative assessment, agreement between student markers was less consistent and more polar than the examiners. When compared with the examiners, students who were told that their peer marking would be scored were more generous markers (their average peer mark was 2.4 % points higher than the average examiner mark) while students who were not being scored on their marking were rather harsh markers (their average peer mark was 4.2 % points lower than the average examiner mark), with scoring of the top-performing students most affected. CONCLUSIONS: Marking of peer marking had a small effect on the marking conduct of students in summative assessment of oral presentation but possibly indicated a more balanced marking performance
Computing the vertices of tropical polyhedra using directed hypergraphs
We establish a characterization of the vertices of a tropical polyhedron
defined as the intersection of finitely many half-spaces. We show that a point
is a vertex if, and only if, a directed hypergraph, constructed from the
subdifferentials of the active constraints at this point, admits a unique
strongly connected component that is maximal with respect to the reachability
relation (all the other strongly connected components have access to it). This
property can be checked in almost linear-time. This allows us to develop a
tropical analogue of the classical double description method, which computes a
minimal internal representation (in terms of vertices) of a polyhedron defined
externally (by half-spaces or hyperplanes). We provide theoretical worst case
complexity bounds and report extensive experimental tests performed using the
library TPLib, showing that this method outperforms the other existing
approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section
5 (using directed hypergraphs), detailed appendix; v3: major revision of the
article (adding tropical hyperplanes, alternative method by arrangements,
etc); v4: minor revisio
Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon
The raise and peel model of a one-dimensional fluctuating interface (model A)
is extended by considering one source (model B) or two sources (model C) at the
boundaries. The Hamiltonians describing the three processes have, in the
thermodynamic limit, spectra given by conformal field theory. The probability
of the different configurations in the stationary states of the three models
are not only related but have interesting combinatorial properties. We show
that by extending Pascal's triangle (which gives solutions to linear relations
in terms of integer numbers), to an hexagon, one obtains integer solutions of
bilinear relations. These solutions give not only the weights of the various
configurations in the three models but also give an insight to the connections
between the probability distributions in the stationary states of the three
models. Interestingly enough, Pascal's hexagon also gives solutions to a
Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few
references are adde
- …
