732 research outputs found

    The Cube Recurrence

    Full text link
    We construct a combinatorial model that is described by the cube recurrence, a nonlinear recurrence relation introduced by Propp, which generates families of Laurent polynomials indexed by points in Z3\mathbb{Z}^3. In the process, we prove several conjectures of Propp and of Fomin and Zelevinsky, and we obtain a combinatorial interpretation for the terms of Gale-Robinson sequences. We also indicate how the model might be used to obtain some interesting results about perfect matchings of certain bipartite planar graphs

    The mm-dissimilarity map and representation theory of SLmSL_m

    Get PDF
    We give another proof that mm-dissimilarity vectors of weighted trees are points on the tropical Grassmanian, as conjectured by Cools, and proved by Giraldo in response to a question of Sturmfels and Pachter. We accomplish this by relating mm-dissimilarity vectors to the representation theory of SLm.SL_m.Comment: 11 pages, 8 figure

    Q-systems, Heaps, Paths and Cluster Positivity

    Full text link
    We consider the cluster algebra associated to the QQ-system for ArA_r as a tool for relating QQ-system solutions to all possible sets of initial data. We show that the conserved quantities of the QQ-system are partition functions for hard particles on particular target graphs with weights, which are determined by the choice of initial data. This allows us to interpret the simplest solutions of the Q-system as generating functions for Viennot's heaps on these target graphs, and equivalently as generating functions of weighted paths on suitable dual target graphs. The generating functions take the form of finite continued fractions. In this setting, the cluster mutations correspond to local rearrangements of the fractions which leave their final value unchanged. Finally, the general solutions of the QQ-system are interpreted as partition functions for strongly non-intersecting families of lattice paths on target lattices. This expresses all cluster variables as manifestly positive Laurent polynomials of any initial data, thus proving the cluster positivity conjecture for the ArA_r QQ-system. We also give an alternative formulation in terms of domino tilings of deformed Aztec diamonds with defects.Comment: 106 pages, 38 figure

    Computing Linear Matrix Representations of Helton-Vinnikov Curves

    Full text link
    Helton and Vinnikov showed that every rigidly convex curve in the real plane bounds a spectrahedron. This leads to the computational problem of explicitly producing a symmetric (positive definite) linear determinantal representation for a given curve. We study three approaches to this problem: an algebraic approach via solving polynomial equations, a geometric approach via contact curves, and an analytic approach via theta functions. These are explained, compared, and tested experimentally for low degree instances.Comment: 19 pages, 3 figures, minor revisions; Mathematical Methods in Systems, Optimization and Control, Birkhauser, Base

    Discrete integrable systems, positivity, and continued fraction rearrangements

    Full text link
    In this review article, we present a unified approach to solving discrete, integrable, possibly non-commutative, dynamical systems, including the QQ- and TT-systems based on ArA_r. The initial data of the systems are seen as cluster variables in a suitable cluster algebra, and may evolve by local mutations. We show that the solutions are always expressed as Laurent polynomials of the initial data with non-negative integer coefficients. This is done by reformulating the mutations of initial data as local rearrangements of continued fractions generating some particular solutions, that preserve manifest positivity. We also show how these techniques apply as well to non-commutative settings.Comment: 24 pages, 2 figure

    Integrable structure of box-ball systems: crystal, Bethe ansatz, ultradiscretization and tropical geometry

    Full text link
    The box-ball system is an integrable cellular automaton on one dimensional lattice. It arises from either quantum or classical integrable systems by the procedures called crystallization and ultradiscretization, respectively. The double origin of the integrability has endowed the box-ball system with a variety of aspects related to Yang-Baxter integrable models in statistical mechanics, crystal base theory in quantum groups, combinatorial Bethe ansatz, geometric crystals, classical theory of solitons, tau functions, inverse scattering method, action-angle variables and invariant tori in completely integrable systems, spectral curves, tropical geometry and so forth. In this review article, we demonstrate these integrable structures of the box-ball system and its generalizations based on the developments in the last two decades.Comment: 73 page

    The solution of the quantum A1A_1 T-system for arbitrary boundary

    Full text link
    We solve the quantum version of the A1A_1 TT-system by use of quantum networks. The system is interpreted as a particular set of mutations of a suitable (infinite-rank) quantum cluster algebra, and Laurent positivity follows from our solution. As an application we re-derive the corresponding quantum network solution to the quantum A1A_1 QQ-system and generalize it to the fully non-commutative case. We give the relation between the quantum TT-system and the quantum lattice Liouville equation, which is the quantized YY-system.Comment: 24 pages, 18 figure

    Evaluation of marking of peer marking in oral presentation.

    Get PDF
    BACKGROUND: Peer marking is an important skill for students, helping them to understand the process of learning and assessment. This method is increasingly used in medical education, particularly in formative assessment. However, the use of peer marking in summative assessment is not widely adopted because many teachers are concerned about biased marking by students of their peers. OBJECTIVE: The aim of this study was to investigate whether marking of summative peer assessment can improve the reliability of peer marking. METHODS: In a retrospective analysis, the peer-marking results of a summative assessment of oral presentations of two cohorts of students were compared. One group of students was told that their peer marks would be assessed against a benchmark consisting of the average of examiner marks and that these scores together with the peer and examiner marks would form their final exam results. The other group of students were just informed that their final exam results would be determined based on the examiner and peer marks. RESULTS: Based on examiner marks, both groups of students performed similarly in their summative assessment, agreement between student markers was less consistent and more polar than the examiners. When compared with the examiners, students who were told that their peer marking would be scored were more generous markers (their average peer mark was 2.4 % points higher than the average examiner mark) while students who were not being scored on their marking were rather harsh markers (their average peer mark was 4.2 % points lower than the average examiner mark), with scoring of the top-performing students most affected. CONCLUSIONS: Marking of peer marking had a small effect on the marking conduct of students in summative assessment of oral presentation but possibly indicated a more balanced marking performance

    Computing the vertices of tropical polyhedra using directed hypergraphs

    Get PDF
    We establish a characterization of the vertices of a tropical polyhedron defined as the intersection of finitely many half-spaces. We show that a point is a vertex if, and only if, a directed hypergraph, constructed from the subdifferentials of the active constraints at this point, admits a unique strongly connected component that is maximal with respect to the reachability relation (all the other strongly connected components have access to it). This property can be checked in almost linear-time. This allows us to develop a tropical analogue of the classical double description method, which computes a minimal internal representation (in terms of vertices) of a polyhedron defined externally (by half-spaces or hyperplanes). We provide theoretical worst case complexity bounds and report extensive experimental tests performed using the library TPLib, showing that this method outperforms the other existing approaches.Comment: 29 pages (A4), 10 figures, 1 table; v2: Improved algorithm in section 5 (using directed hypergraphs), detailed appendix; v3: major revision of the article (adding tropical hyperplanes, alternative method by arrangements, etc); v4: minor revisio

    Raise and Peel Models of fluctuating interfaces and combinatorics of Pascal's hexagon

    Full text link
    The raise and peel model of a one-dimensional fluctuating interface (model A) is extended by considering one source (model B) or two sources (model C) at the boundaries. The Hamiltonians describing the three processes have, in the thermodynamic limit, spectra given by conformal field theory. The probability of the different configurations in the stationary states of the three models are not only related but have interesting combinatorial properties. We show that by extending Pascal's triangle (which gives solutions to linear relations in terms of integer numbers), to an hexagon, one obtains integer solutions of bilinear relations. These solutions give not only the weights of the various configurations in the three models but also give an insight to the connections between the probability distributions in the stationary states of the three models. Interestingly enough, Pascal's hexagon also gives solutions to a Hirota's difference equation.Comment: 33 pages, an abstract and an introduction are rewritten, few references are adde
    corecore