1,761 research outputs found
Spatial mapping of hepatitis C prevalence in recent injecting drug users in contact with services.
In developed countries the majority of hepatitis C virus (HCV) infections occur in injecting drug users (IDUs) with prevalence in IDUs often high, but with wide geographical differences within countries. Estimates of local prevalence are needed for planning services for IDUs, but it is not practical to conduct HCV seroprevalence surveys in all areas. In this study survey data from IDUs attending specialist services were collected in 52/149 sites in England between 2006 and 2008. Spatially correlated random-effects models were used to estimate HCV prevalence for all sites, using auxiliary data to aid prediction. Estimates ranged from 14% to 82%, with larger cities, London and the North West having the highest HCV prevalence. The methods used generated robust estimates for each area, with a well-identified spatial pattern that improved predictions. Such models may be of use in other areas of study where surveillance data are sparse
Patient reactions to a web-based cardiovascular risk calculator in type 2 diabetes: a qualitative study in primary care.
Use of risk calculators for specific diseases is increasing, with an underlying assumption that they promote risk reduction as users become better informed and motivated to take preventive action. Empirical data to support this are, however, sparse and contradictory
Bayes and health care research.
Bayes’ rule shows how one might rationally change one’s beliefs in the light of evidence. It is the foundation of a statistical method called Bayesianism. In health care research, Bayesianism has its advocates but the dominant statistical method is frequentism.
There are at least two important philosophical differences between these methods. First, Bayesianism takes a subjectivist view of probability (i.e. that probability scores are statements of subjective belief, not objective fact) whilst frequentism takes an objectivist view. Second, Bayesianism is explicitly inductive (i.e. it shows how we may induce views about the world based on partial data from it) whereas frequentism is at least compatible with non-inductive views of scientific method, particularly the critical realism of Popper.
Popper and others detail significant problems with induction. Frequentism’s apparent ability to avoid these, plus its ability to give a seemingly more scientific and objective take on probability, lies behind its philosophical appeal to health care researchers.
However, there are also significant problems with frequentism, particularly its inability to assign probability scores to single events. Popper thus proposed an alternative objectivist view of probability, called propensity theory, which he allies to a theory of corroboration; but this too has significant problems, in particular, it may not successfully avoid induction. If this is so then Bayesianism might be philosophically the strongest of the statistical approaches. The article sets out a number of its philosophical and methodological attractions. Finally, it outlines a way in which critical realism and Bayesianism might work together.
</p
Transmission tree of the highly pathogenic avian influenza (H5N1) epidemic in Israel, 2015
The transmission tree of the Israeli 2015 epidemic of highly pathogenic avian influenza (H5N1) was modelled by combining the spatio-temporal distribution of the outbreaks and the genetic distance between virus isolates. The most likely successions of transmission events were determined and transmission parameters were estimated. It was found that the median infectious pressure exerted at 1 km was 1.59 times (95% CI 1.04, 6.01) and 3.54 times (95% CI 1.09, 131.75) higher than that exerted at 2 and 5 km, respectively, and that three farms were responsible for all seven transmission events. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13567-016-0393-2) contains supplementary material, which is available to authorized users
Geo-additive models of Childhood Undernutrition in three Sub-Saharan African Countries
We investigate the geographical and socioeconomic determinants of childhood undernutrition in Malawi, Tanzania and Zambia, three neighboring countries in Southern Africa using the 1992 Demographic and Health Surveys. We estimate models of undernutrition jointly for the three countries to explore regional patterns of undernutrition that transcend boundaries, while allowing for country-specific interactions. We use semiparametric models to flexibly model the effects of selected so-cioeconomic covariates and spatial effects. Our spatial analysis is based on a flexible geo-additive model using the district as the geographic unit of anal-ysis, which allows to separate smooth structured spatial effects from random effect. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques. While the socioeconomic determinants generally confirm what is known in the literature, we find distinct residual spatial patterns that are not explained by the socioeconomic determinants. In particular, there appears to be a belt run-ning from Southern Tanzania to Northeastern Zambia which exhibits much worse undernutrition, even after controlling for socioeconomic effects. These effects do transcend borders between the countries, but to a varying degree. These findings have important implications for targeting policy as well as the search for left-out variables that might account for these residual spatial patterns
Effects of vessel traffic on relative abundance and behaviour of cetaceans : the case of the bottlenose dolphins in the Archipelago de La Maddalena, north-western Mediterranean sea
Acknowledgements This study was part of the Tursiops Project of the Dolphin Research Centre of Caprera, La Maddalena. Financial and logistical support was provided by the Centro Turistico Studentesco (CTS) and by the National Park of the Archipelago de La Maddalena. We thank the Natural Reserve of Bocche di Bonifacio for the support provided during data collection. The authors thank the numerous volunteers of the Caprera Dolphin Research Centre and especially Marco Ferraro, Mirko Ugo, Angela Pira and Maurizio Piras whose assistance during field observation and skills as a boat driver were invaluable.Peer reviewedPostprin
Using Markov chain Monte Carlo methods for estimating parameters with gravitational radiation data
We present a Bayesian approach to the problem of determining parameters for
coalescing binary systems observed with laser interferometric detectors. By
applying a Markov Chain Monte Carlo (MCMC) algorithm, specifically the Gibbs
sampler, we demonstrate the potential that MCMC techniques may hold for the
computation of posterior distributions of parameters of the binary system that
created the gravity radiation signal. We describe the use of the Gibbs sampler
method, and present examples whereby signals are detected and analyzed from
within noisy data.Comment: 21 pages, 10 figure
Assessing the Health of Richibucto Estuary with the Latent Health Factor Index
The ability to quantitatively assess the health of an ecosystem is often of
great interest to those tasked with monitoring and conserving ecosystems. For
decades, research in this area has relied upon multimetric indices of various
forms. Although indices may be numbers, many are constructed based on
procedures that are highly qualitative in nature, thus limiting the
quantitative rigour of the practical interpretations made from these indices.
The statistical modelling approach to construct the latent health factor index
(LHFI) was recently developed to express ecological data, collected to
construct conventional multimetric health indices, in a rigorous quantitative
model that integrates qualitative features of ecosystem health and preconceived
ecological relationships among such features. This hierarchical modelling
approach allows (a) statistical inference of health for observed sites and (b)
prediction of health for unobserved sites, all accompanied by formal
uncertainty statements. Thus far, the LHFI approach has been demonstrated and
validated on freshwater ecosystems. The goal of this paper is to adapt this
approach to modelling estuarine ecosystem health, particularly that of the
previously unassessed system in Richibucto in New Brunswick, Canada. Field data
correspond to biotic health metrics that constitute the AZTI marine biotic
index (AMBI) and abiotic predictors preconceived to influence biota. We also
briefly discuss related LHFI research involving additional metrics that form
the infaunal trophic index (ITI). Our paper is the first to construct a
scientifically sensible model to rigorously identify the collective explanatory
capacity of salinity, distance downstream, channel depth, and silt-clay content
--- all regarded a priori as qualitatively important abiotic drivers ---
towards site health in the Richibucto ecosystem.Comment: On 2013-05-01, a revised version of this article was accepted for
publication in PLoS One. See Journal reference and DOI belo
Altered splicing of the BIN1 muscle-specific exon in humans and dogs with highly progressive centronuclear myopathy
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies
Impact of Community-Based Larviciding on the Prevalence of Malaria Infection in Dar es Salaam, Tanzania.
The use of larval source management is not prioritized by contemporary malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in particular, could be effective in urban areas where transmission is focal and accessibility to Anopheles breeding habitats is generally easier than in rural settings. The objective of this study is to assess the effectiveness of a community-based microbial larviciding intervention to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. Larviciding was implemented in 3 out of 15 targeted wards of Dar es Salaam in 2006 after two years of baseline data collection. This intervention was subsequently scaled up to 9 wards a year later, and to all 15 targeted wards in 2008. Continuous randomized cluster sampling of malaria prevalence and socio-demographic characteristics was carried out during 6 survey rounds (2004-2008), which included both cross-sectional and longitudinal data (N = 64,537). Bayesian random effects logistic regression models were used to quantify the effect of the intervention on malaria prevalence at the individual level. Effect size estimates suggest a significant protective effect of the larviciding intervention. After adjustment for confounders, the odds of individuals living in areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio = 0.79; 95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding intervention was most effective during dry seasons and had synergistic effects with other protective measures such as use of insecticide-treated bed nets and house proofing (i.e., complete ceiling or window screens). A large-scale community-based larviciding intervention significantly reduced the prevalence of malaria infection in urban Dar es Salaam
- …
