2,321 research outputs found
Robotic Resistance Treadmill Training Improves Locomotor Function in Children With Cerebral Palsy: A Randomized Controlled Pilot Study
Objective To determine whether applying controlled resistance forces to the legs during the swing phase of gait may improve the efficacy of treadmill training as compared with applying controlled assistance forces in children with cerebral palsy (CP). Design Randomized controlled study. Setting Research unit of a rehabilitation hospital. Participants Children with spastic CP (N=23; mean age, 10.6y; range, 6–14y; Gross Motor Function Classification System levels, I–IV). Interventions Participants were randomly assigned to receive controlled assistance (n=11) or resistance (n=12) loads applied to the legs at the ankle. Participants underwent robotic treadmill training 3 times a week for 6 weeks (18 sessions). A controlled swing assistance/resistance load was applied to both legs starting from the toe-off to mid-swing phase of gait during training. Main Outcome Measures Outcome measures consisted of overground walking speed, 6-minute walk distance, and Gross Motor Function Measure scores and were assessed pre and post 6 weeks of training and 8 weeks after the end of training. Results After 6 weeks of treadmill training in participants from the resistance training group, fast walking speed and 6-minute walk distance significantly improved (18% and 30% increases, respectively), and 6-minute walk distance was still significantly greater than that at baseline (35% increase) 8 weeks after the end of training. In contrast, overground gait speed and 6-minute walk distance had no significant changes after robotic assistance training. Conclusions The results of the present study indicated that robotic resistance treadmill training is more effective than assistance training in improving locomotor function in children with CP
Effects of SUSY-QCD in hadronic Higgs production at next-to-next-to-leading order
An estimate of the NNLO supersymmetric QCD effects for Higgs production at
hadron colliders is given. Assuming an effective gluon-Higgs interaction, these
corrections enter only in terms of process-independent, factorizable terms. We
argue that the current knowledge of these terms up to NLO is sufficient to
derive the NNLO hadronic cross section within the limitations of the standard
theoretical uncertainties arising mainly from renormalization and factorization
scale variations. The SUSY contributions are small with respect to the QCD
effects, which means that the NNLO corrections to Higgs production are very
similar in the Standard Model and the MSSM.Comment: LaTeX, 5 pages, 3 embedded PostScript figure
QCD Corrections to SUSY Higgs Production: The Role of Squark Loops
We calculate the two-loop QCD corrections to the production of the neutral
supersymmetric Higgs bosons via the gluon fusion mechanism at hadron colliders,
including the contributions of squark loops. To a good approximation, these
additional contributions lead to the same QCD corrections as in the case where
only top and bottom quark loops are taken into account. The QCD corrections are
large and increase the Higgs production cross sections significantly.Comment: 5 pages, latex, 2 figure
Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion
The weak-boson fusion process is expected to provide crucial information on
Higgs boson couplings at the Large Hadron Collider at CERN. The achievable
statistical accuracy demands comparison with next-to-leading order QCD
calculations, which are presented here in the form of a fully flexible parton
Monte Carlo program. QCD corrections are determined for jet distributions and
are shown to be modest, of order 5 to 10% in most cases, but reaching 30%
occasionally. Remaining scale uncertainties range from order 5% or less for
distributions to below +-2% for the Higgs boson cross section in typical
weak-boson fusion search regions.Comment: 19 pages, 8 figure
Determining the Structure of Higgs Couplings at the LHC
Higgs boson production via weak boson fusion at the CERN Large Hadron
Collider has the capability to determine the dominant CP nature of a Higgs
boson, via the tensor structure of its coupling to weak bosons. This
information is contained in the azimuthal angle distribution of the two
outgoing forward tagging jets. The technique is independent of both the Higgs
boson mass and the observed decay channel.Comment: 5 pages, 4 figures, version accepted for publication in PR
Roots of the derivative of the Riemann zeta function and of characteristic polynomials
We investigate the horizontal distribution of zeros of the derivative of the
Riemann zeta function and compare this to the radial distribution of zeros of
the derivative of the characteristic polynomial of a random unitary matrix.
Both cases show a surprising bimodal distribution which has yet to be
explained. We show by example that the bimodality is a general phenomenon. For
the unitary matrix case we prove a conjecture of Mezzadri concerning the
leading order behavior, and we show that the same follows from the random
matrix conjectures for the zeros of the zeta function.Comment: 24 pages, 6 figure
Exact Hybrid Covariance Thresholding for Joint Graphical Lasso
This paper considers the problem of estimating multiple related Gaussian
graphical models from a -dimensional dataset consisting of different
classes. Our work is based upon the formulation of this problem as group
graphical lasso. This paper proposes a novel hybrid covariance thresholding
algorithm that can effectively identify zero entries in the precision matrices
and split a large joint graphical lasso problem into small subproblems. Our
hybrid covariance thresholding method is superior to existing uniform
thresholding methods in that our method can split the precision matrix of each
individual class using different partition schemes and thus split group
graphical lasso into much smaller subproblems, each of which can be solved very
fast. In addition, this paper establishes necessary and sufficient conditions
for our hybrid covariance thresholding algorithm. The superior performance of
our thresholding method is thoroughly analyzed and illustrated by a few
experiments on simulated data and real gene expression data
Top quark associated production of topcolor pions at hadron colliders
We investigate the associated production of a neutral physical pion with top
quarks in the context of topcolor assisted technicolor. We find that single-top
associated production does not yield viable rates at either the Tevatron or
LHC. tt-associated production at the Tevatron is suppressed relative to
Standard Model ttH, but at the LHC is strongly enhanced and would allow for
easy observation of the main decay channels to bottom quarks, and possible
observation of the decay to gluons.Comment: 13 pages, 4 figures, submitted to PR
Higgs Physics: Theory
I review the theoretical aspects of the physics of Higgs bosons, focusing on
the elements that are relevant for the production and detection at present
hadron colliders. After briefly summarizing the basics of electroweak symmetry
breaking in the Standard Model, I discuss Higgs production at the LHC and at
the Tevatron, with some focus on the main production mechanism, the gluon-gluon
fusion process, and summarize the main Higgs decay modes and the experimental
detection channels. I then briefly survey the case of the minimal
supersymmetric extension of the Standard Model. In a last section, I review the
prospects for determining the fundamental properties of the Higgs particles
once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium
on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27
August 2011, Mumbai, Indi
- …
