1,224 research outputs found
Does the Community Reinvestment Act influence lending? an analysis of changes in bank low-income mortgage activity
Anecdotal evidence that the Community Reinvestment Act (CRA) influences the lending behavior of financial institutions has not been uniformly supported by empirical research. We revisit this issue by evaluating changes in low-income mortgage lending at commercial banks over the 1992-96 period. Our empirical results fail to support a hypothesis that banks respond to public and regulatory pressure exerted as a result of a downgrade in CRA rating by increasing low-income mortgage lending. The findings are consistent with the contention that during this period regulators stressed adjustments in the lending process of banks (e.g., documentation of lending program and efforts directed at targeted markets) more than lending performance. The findings underscore the importance of regulatory efforts made later in the decade to more closely link enforcement of the CRA to lending outcomes.Community Reinvestment Act of 1977 ; Mortgages ; Bank loans ; Financial institutions
X-56A Structural Dynamics Ground Testing Overview and Lessons Learned
The X-56A Multi-Utility Technology Testbed (MUTT) is a subscale, fixed-wing aircraft designed for high-risk aeroelastic flight demonstration and research. Structural dynamics ground testing for model validation was especially important for this vehicle because the structural model was directly used in the development of a flight control system with active flutter suppression capabilities. Structural dynamics ground tests of the X-56A MUTT with coupled rigid-body and structural modes provided a unique set of challenges. An overview of the ground vibration test (GVT) and moment of inertia (MOI) test setup and execution is presented. The series of GVTs included the wing by itself attached to a strongback and complete vehicle at two mass conditions: empty and full fuel. Two boundary conditions for the complete-vehicle test were studied: on landing gear and suspended free-free. Pitch MOI tests were performed using a compound pendulum method and repeated with two different pendulum lengths for independent verification. The original soft-support test configuration for the GVT used multiple bungees, resulting in unforeseen coupling interactions between the soft-support bungees and the vehicle structural modes. To resolve this problem, the soft-support test setup underwent multiple iterations. The various GVT configurations and boundary-condition modifications are highlighted and explained. Lessons learned are captured for future consideration when performing structural dynamics testing with similar vehicles
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section
The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps
Influence of Finite Span and Sweep on Active Flow Control Efficacy
Active flow control efficacy was investigated by means of leading-edge and flap-shoulder zero mass-flux blowing slots on a semispan wing model that was tested in unswept (standard) and swept configurations. On the standard configuration, stall commenced inboard, but with sweep the wing stalled initially near the tip. On both configurations, leading-edge perturbations increased CL,max and post stall lift, both with and without deflected flaps. Without sweep, the effect of control was approximately uniform across the wing span but remained effective to high angles of attack near the tip; when sweep was introduced a significant effect was noted inboard, but this effect degraded along the span and produced virtually no meaningful lift enhancement near the tip, irrespective of the tip configuration. In the former case, control strengthened the wingtip vortex; in the latter case, a simple semi-empirical model, based on the trajectory or "streamline" of the evolving perturbation, served to explain the observations. In the absence of sweep, control on finite-span flaps did not differ significantly from their nominally twodimensional counterpart. Control from the flap produced expected lift enhancement and CL,max improvements in the absence of sweep, but these improvements degraded with the introduction of sweep
Z2SAL: a translation-based model checker for Z
Despite being widely known and accepted in industry, the Z formal specification language has not so far been well supported by automated verification tools, mostly because of the challenges in handling the abstraction of the language. In this paper we discuss a novel approach to building a model-checker for Z, which involves implementing a translation from Z into SAL, the input language for the Symbolic Analysis Laboratory, a toolset which includes a number of model-checkers and a simulator. The Z2SAL translation deals with a number of important issues, including: mapping unbounded, abstract specifications into bounded, finite models amenable to a BDD-based symbolic checker; converting a non-constructive and piecemeal style of functional specification into a deterministic, automaton-based style of specification; and supporting the rich set-based vocabulary of the Z mathematical toolkit. This paper discusses progress made towards implementing as complete and faithful a translation as possible, while highlighting certain assumptions, respecting certain limitations and making use of available optimisations. The translation is illustrated throughout with examples; and a complete working example is presented, together with performance data
Quiet Spike(TradeMark) Build-up Ground Vibration Testing Approach
Flight tests of Gulfstream Aerospace Corporation s Quiet Spike(TradeMark) hardware were recently completed on the NASA Dryden Flight Research Center F-15B airplane. NASA Dryden uses a modified F-15B airplane as a testbed aircraft to cost-effectively fly flight research experiments that are typically mounted underneath the F-15B airplane, along the fuselage centerline. For the Quiet Spike(TradeMark) experiment, however, instead of a centerline mounting, a relatively long forward-pointing boom was attached to the radar bulkhead of the F-15B airplane. The Quiet Spike(TradeMark) experiment is a stepping-stone to airframe structural morphing technologies designed to mitigate the sonic-boom strength of business jets over land. The Quiet Spike(TradeMark) boom is a concept in which an aircraft s noseboom would be extended prior to supersonic acceleration. This morphing effectively lengthens the aircraft, thus reducing the peak sonic-boom amplitude, but is also expected to partition the otherwise strong bow shock into a series of reduced-strength, noncoalescing shocklets. Prior to flying the Quiet Spike(TradeMark) experiment on the F-15B airplane several ground vibration tests were required to understand the Quiet Spike(TradeMark) modal characteristics and coupling effects with the F-15B airplane. However, due to the flight hardware availability and compressed schedule requirements, a "traditional" ground vibration test of the mated F-15B Quiet Spike(TradeMark) ready-for- flight configuration did not leave sufficient time available for the finite element model update and flutter analyses before flight testing. Therefore, a "nontraditional" ground vibration testing approach was taken. This paper provides an overview of each phase of the "nontraditional" ground vibration testing completed for the Quiet Spike(TradeMark) project which includes the test setup details, instrumentation layout, and modal results obtained in support of the structural dynamic modeling and flutter analyses
Admit your weakness: Verifying correctness on TSO architectures
“The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-319-15317-9_22 ”.Linearizability has become the standard correctness criterion for fine-grained non-atomic concurrent algorithms, however, most approaches assume a sequentially consistent memory model, which is not always realised in practice. In this paper we study the correctness of concurrent algorithms on a weak memory model: the TSO (Total Store Order) memory model, which is commonly implemented by multicore architectures. Here, linearizability is often too strict, and hence, we prove a weaker criterion, quiescent consistency instead. Like linearizability, quiescent consistency is compositional making it an ideal correctness criterion in a component-based context. We demonstrate how to model a typical concurrent algorithm, seqlock, and prove it quiescent consistent using a simulation-based approach. Previous approaches to proving correctness on TSO architectures have been based on linearizabilty which makes it necessary to modify the algorithm’s high-level requirements. Our approach is the first, to our knowledge, for proving correctness without the need for such a modification
Aeroelastic Response of the Adaptive Compliant Trailing Edge Transition Section
This presentation describes an unconventional process for analyzing and validating non-linear aerostructures
Testing and Validation of the Dynamic Inertia Measurement Method
The Dynamic Inertia Measurement (DIM) method uses a ground vibration test setup to determine the mass properties of an object using information from frequency response functions. Most conventional mass properties testing involves using spin tables or pendulum-based swing tests, which for large aerospace vehicles becomes increasingly difficult and time-consuming, and therefore expensive, to perform. The DIM method has been validated on small test articles but has not been successfully proven on large aerospace vehicles. In response, the National Aeronautics and Space Administration Armstrong Flight Research Center (Edwards, California) conducted mass properties testing on an "iron bird" test article that is comparable in mass and scale to a fighter-type aircraft. The simple two-I-beam design of the "iron bird" was selected to ensure accurate analytical mass properties. Traditional swing testing was also performed to compare the level of effort, amount of resources, and quality of data with the DIM method. The DIM test showed favorable results for the center of gravity and moments of inertia; however, the products of inertia showed disagreement with analytical predictions
Quasars: a supermassive rotating toroidal black hole interpretation
A supermassive rotating toroidal black hole (TBH) is proposed as the
fundamental structure of quasars and other jet-producing active galactic
nuclei. Rotating protogalaxies gather matter from the central gaseous region
leading to the birth of massive toroidal stars whose internal nuclear reactions
proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse
produces a slender ring-shaped TBH remnant. These events are typically the
first supernovae of the host galaxies. Given time the TBH mass increases
through continued accretion by several orders of magnitude, the event horizon
swells whilst the central aperture shrinks. The difference in angular
velocities between the accreting matter and the TBH induces a magnetic field
that is strongest in the region of the central aperture and innermost
ergoregion. Due to the presence of negative energy states when such a
gravitational vortex is immersed in an electromagnetic field, circumstances are
near ideal for energy extraction via non-thermal radiation including the
Penrose process and superradiant scattering. This establishes a self-sustaining
mechanism whereby the transport of angular momentum away from the quasar by
relativistic bi-directional jets reinforces both the modulating magnetic field
and the TBH/accretion disk angular velocity differential. Quasar behaviour is
extinguished once the BH topology becomes spheroidal. Similar mechanisms may be
operating in microquasars, SNe and GRBs when neutron density or BH tori arise.
In certain circumstances, long-term TBH stability can be maintained by a
negative cosmological constant, otherwise the classical topology theorems must
somehow be circumvented. Preliminary evidence is presented that Planck-scale
quantum effects may be responsible.Comment: 26 pages, 14 figs, various corrections and enhancements, final
versio
- …
