1,639 research outputs found
Exploring the Levinthal limit in protein folding
According to the thermodynamic hypothesis, the native state of proteins is uniquely defined by their amino acid sequence. On the other hand, according to Levinthal, the native state is just a local minimum of the free energy and a given amino acid sequence, in the same thermodynamic conditions, can assume many, very different structures that are as thermodynamically stable as the native state. This is the Levinthal limit explored in this work. Using computer simulations, we compare the interactions that stabilize the native state of four different proteins with those that stabilize three non-native states of each protein and find that the nature of the interactions is very similar for all such 16 conformers. Furthermore, an enhancement of the degree of fluctuation of the non-native conformers can be explained by an insufficient relaxation to their local free energy minimum. These results favor Levinthal's hypothesis that protein folding is a kinetic non-equilibrium process.FCT - Foundation for Science and Technology, Portugal [UID/Multi/04326/2013]; Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); Conselho Nacional de Desenvolvimento Cientia co e Tecnologico (CNPq
Growth and development after oesophageal atresia surgery: Need for long-term multidisciplinary follow-up
Abstract
Survival rates in oesophageal atresia patients have reached over 90%. In long-term follow-up studies the focus has shifted from purely surgical or gastrointestinal evaluation to a multidisciplinary approach. We reviewed the literature on the long-term morbidity of these patients and discuss mainly issues of physical growth and neurodevelopment. We conclude that growth problems–both stunting and wasting–are frequently seen, but that sufficient longitudinal data are lacking. Therefore, it is unclear whether catch-up growth into adolescence and adulthood occurs. Data on determinants of growth retardation are also lacking in current literature. Studies on neurodevelopment beyond preschool age are scarce but oesophageal atresia patients seem at risk for academic problems and motor function delay. Many factors contribute to the susceptibility to growth and development problems and we propose a multidisciplinary follow-up schedule into adulthood future care which may help improve quality of life
Water permeation through stratum corneum lipid bilayers from atomistic simulations
Stratum corneum, the outermost layer of skin, consists of keratin filled
rigid non-viable corneocyte cells surrounded by multilayers of lipids. The
lipid layer is responsible for the barrier properties of the skin. We calculate
the excess chemical potential and diffusivity of water as a function of depth
in lipid bilayers with compositions representative of the stratum corneum using
atomistic molecular dynamics simulations. The maximum in the excess free energy
of water inside the lipid bilayers is found to be twice that of water in
phospholipid bilayers at the same temperature. Permeability, which decreases
exponentially with the free energy barrier, is reduced by several orders of
magnitude as compared to with phospholipid bilayers. The average time it takes
for a water molecule to cross the bilayer is calculated by solving the
Smoluchowski equation in presence of the free energy barrier. For a bilayer
composed of a 2:2:1 molar ratio of ceramide NS 24:0, cholesterol and free fatty
acid 24:0 at 300K, we estimate the permeability P=3.7e-9 cm/s and the average
crossing time \tau_{av}=0.69 ms. The permeability is about 30 times smaller
than existing experimental results on mammalian skin sections.Comment: latex, 8 pages, 6 figure
Lipid membranes for membrane proteins
Andreas Kukol, ‘Lipid membranes for membrane proteins in Molecular Modeling of Proteins (Clifton: Humana Press/Sringer, 2015), ISBN: 978-1-4939-1464-7, e-BOOK ISBN: 978-1-4939-1465-4Peer reviewe
Within-person variation in serum thyrotropin concentration: main sources, potential underlying biological mechanisms, and clinical implications
Background: Individuals exhibit fluctuations in the concentration of serum thyroid-stimulating hormone (TSH) over time. The scale of these variations ranges from minutes to hours, and from months to years. The main factors contributing to the observed within-person fluctuations in serum TSH comprise pulsatile secretion, circadian rhythm, seasonality, and ageing. In clinical practice and clinical research however, such within-person biological variation in serum TSH concentrations is often not considered. The aim of this review is to present an overview of the main sources of within-person variation in TSH levels, as well as the potential underlying biological mechanisms, and the clinical implications.Summary: In euthyroid individuals, the circadian rhythm, with a nocturnal surge around 02:00-04:00 h and a nadir during daytime has the greatest impact on variations in serum TSH concentrations. Another source of within-person variation in TSH levels is seasonality, with generally higher levels during the cold winter months. Since TSH is secreted in a pulsatile manner, TSH levels also fluctuate over minutes. Furthermore, elevated TSH levels have been observed with ageing. Other factors that affect TSH levels include thyroid peroxidase (TPO)-antibody positivity, BMI, obesity, smoking, critical illness, and many xenobiotics, including environmental pollutants and drugs. Potential underlying biological mechanisms of within-person variation in TSH levels can be safely concluded from the ability of TSH to respond quickly to changes in cues from the internal or external environment in order to maintain homeostasis. Such cues include the biological clock, environmental temperature, and length of day. The observed increase in TSH level with ageing can be explained at a population level and at an organism level. In clinical practice, the season for thyroid testing can influence a patient's test result and it occurs frequently that subclinical hypothyroid patients normalize to euthyroid levels over time without intervention.Conclusions: Serum TSH concentrations vary over time within an individual, which is caused by multiple different internal and external factors. It is important to take the within-person variations in serum TSH concentrations into account when testing a patient in clinical practice, but also in performing clinical research.Diabetes mellitus: pathophysiological changes and therap
Relationships between 24-hour LH and testosterone concentrations and with other pituitary hormones in healthy older men
Objective: To investigate the relationship between LH and testosterone (T), which characteristics associate with the strength of this relationship, and their interrelationships with GH, TSH, cortisol, and ACTH.Design: Hormones were measured in serum samples collected every 10 minutes during 24 hours from 20 healthy men, comprising 10 offspring of long-lived families and 10 control subjects, with a mean (SD) age of 65.6 (5.3) years. We performed cross-correlation analyses to assess the relative strength between 2 timeseries for all possible time shifts.Results: Mean (95% CI) maximal correlation was 0.21 (0.10-0.31) at lag time of 60 minutes between LH and total T concentrations. Results were comparable for calculated free, bioavailable, or secretion rates of T. Men with strong LH-T cross-correlations had, compared with men with no cross-correlation, lower fat mass (18.5 [14.9-19.7] vs. 22.3 [18.4-29.4] kg), waist circumference (93.6 [5.7] vs. 103.1 [12.0] cm), high-sensitivity C-reactive protein (0.7 [0.4-1.3] vs. 1.8 [0.8-12.3] mg/L), IL-6 (0.8 [0.6-1.0] vs. 1.2 [0.9-3.0] pg/mL), and 24-hour mean LH (4.3 [2.0] vs. 6.1 [1.5] U/L), and stronger LH-T feedforward synchrony (1.5 [0.3] vs. 1.9 [0.2]). Furthermore,T was positively cross-correlated withTSH (0.32 [0.21-0.43]), cortisol (0.26 [0.19-0.33]), and ACTH (0.26 [0.19-0.32]).Conclusions: LH is followed by T with a delay of 60 minutes in healthy older men. Men with a strong LH-T relationship had more favorable body composition, inflammatory markers, LH levels, and LH-T feedforward synchrony. We observed positive correlations between T and TSH, cortisol, and ACTH.Pathophysiology, epidemiology and therapy of agein
Virtual environment for studying the docking interactions of rigid biomolecules with haptics
Haptic technology facilitates user interaction with the virtual world via the sense of touch. In molecular docking, haptics enables the user to sense the interaction forces during the docking process. Here we describe a haptics-assisted interactive software tool, called Haptimol RD, for the study of docking interactions. By utilising GPU-accelerated proximity querying methods very large systems can now be studied. Methods for force scaling, multipoint collision response and haptic navigation are described that address force stability issues that are particular to the interactive docking of large systems. Thus Haptimol RD expands, for the first time, the use of interactive biomolecular haptics to the study of protein-protein interactions. Unlike existing approaches, Haptimol RD is designed to run on relatively inexpensive consumer-level hardware and is freely available to the community
A systematic study of water models for molecular simulation:Derivation of water models optimized for use with a reaction field
We have performed long molecular dynamics simulations of water using four popular water models, namely simple point charge (SPC), extended simple point charge (SPC/E), and the three point (TIP3P) and four point (TIP4P) transferable intermolecular potentials. System sizes of 216 and 820 molecules were used to study the dependence of properties on the system size. All systems were simulated at 300 K with and without reaction fields and with two different cutoff radii, in order to study the impact of the cutoff treatment on density, energy, dynamic, and dielectric properties. Furthermore we generated two special-purpose water models based on the SPC and TIP4P models, for use with a reaction field. The atomic charges and the Lennard-Jone
Functional Diversity and Structural Disorder in the Human Ubiquitination Pathway
The ubiquitin-proteasome system plays a central role in cellular regulation and protein quality control (PQC). The system is built as a pyramid of increasing complexity, with two E1 (ubiquitin activating), few dozen E2 (ubiquitin conjugating) and several hundred E3 (ubiquitin ligase) enzymes. By collecting and analyzing E3 sequences from the KEGG BRITE database and literature, we assembled a coherent dataset of 563 human E3s and analyzed their various physical features. We found an increase in structural disorder of the system with multiple disorder predictors (IUPred - E1: 5.97%, E2: 17.74%, E3: 20.03%). E3s that can bind E2 and substrate simultaneously (single subunit E3, ssE3) have significantly higher disorder (22.98%) than E3s in which E2 binding (multi RING-finger, mRF, 0.62%), scaffolding (6.01%) and substrate binding (adaptor/substrate recognition subunits, 17.33%) functions are separated. In ssE3s, the disorder was localized in the substrate/adaptor binding domains, whereas the E2-binding RING/HECT-domains were structured. To demonstrate the involvement of disorder in E3 function, we applied normal modes and molecular dynamics analyses to show how a disordered and highly flexible linker in human CBL (an E3 that acts as a regulator of several tyrosine kinase-mediated signalling pathways) facilitates long-range conformational changes bringing substrate and E2-binding domains towards each other and thus assisting in ubiquitin transfer. E3s with multiple interaction partners (as evidenced by data in STRING) also possess elevated levels of disorder (hubs, 22.90% vs. non-hubs, 18.36%). Furthermore, a search in PDB uncovered 21 distinct human E3 interactions, in 7 of which the disordered region of E3s undergoes induced folding (or mutual induced folding) in the presence of the partner. In conclusion, our data highlights the primary role of structural disorder in the functions of E3 ligases that manifests itself in the substrate/adaptor binding functions as well as the mechanism of ubiquitin transfer by long-range conformational transitions. © 2013 Bhowmick et al
X-ray Diffraction and Molecular Dynamics Study of Medium-range Order in Ambient and Hot Water
We have developed x-ray diffraction measurements with high energy-resolution
and accuracy to study water structure at three different temperatures (7, 25
and 66 C) under normal pressure. Using a spherically curved Ge crystal an
energy resolution better than 15 eV has been achieved which eliminates
influence from Compton scattering. The high quality of the data allows a
precise oxygen-oxygen pair correlation function (PCF) to be directly derived
from the Fourier transform of the experimental data resolving shell structure
out to ~12 {\AA}, i.e. 5 hydration shells. Large-scale molecular dynamics (MD)
simulations using the TIP4P/2005 force-field reproduce excellently the
experimental shell-structure in the range 4-12 {\AA} although less agreement is
seen for the first peak in the PCF. The Local Structure Index [J. Chem. Phys.
104, 7671 (1996)] identifies a tetrahedral minority giving the
intermediate-range oscillations in the PCF and a disordered majority providing
a more featureless background in this range. The current study supports the
proposal that the structure of liquid water, even at high temperatures, can be
described in terms of a two-state fluctuation model involving local structures
related to the high-density and low-density forms of liquid water postulated in
the liquid-liquid phase transition hypothesis.Comment: Submitted to Phys. Chem. Chem. Phy
- …
