2,928 research outputs found
Generating entanglement between quantum dots with different resonant frequencies based on Dipole Induced Transparency
We describe a method for generating entanglement between two spatially
separated dipoles coupled to optical micro-cavities.
The protocol works even when the dipoles have different resonant frequencies
and radiative lifetimes.
This method is particularly important for solid-state emitters, such as
quantum dots, which suffer from large inhomogeneous broadening. We show that
high fidelities can be obtained over a large dipole detuning range without
significant loss of efficiency. We analyze the impact of higher order photon
number states and cavity resonance mismatch on the performance of the protocol
Crowded-Field Astrometry with the Space Interferometry Mission - I. Estimating the Single-Measurement Astrometric Bias Arising from Confusion
The accuracy of position measurements on stellar targets with the future
Space Interferometry Mission (SIM) will be limited not only by photon noise and
by the properties of the instrument (design, stability, etc.) and the overall
measurement program (observing strategy, reduction methods, etc.), but also by
the presence of other "confusing" stars in the field of view (FOV). We use a
simple "phasor" model as an aid to understanding the main effects of this
"confusion bias" in single observations with SIM. This analytic model has been
implemented numerically in a computer code and applied to a selection of
typical SIM target fields drawn from some of the Key Projects already accepted
for the Mission. We expect that less than 1% of all SIM targets will be
vulnerable to confusion bias; we show that for the present SIM design,
confusion may be a concern if the surface density of field stars exceeds 0.4
star/arcsec^2. We have developed a software tool as an aid to ascertaining the
possible presence of confusion bias in single observations of any arbitrary
field. Some a priori knowledge of the locations and spectral energy
distributions of the few brightest stars in the FOV is helpful in establishing
the possible presence of confusion bias, but the information is in general not
likely to be available with sufficient accuracy to permit its removal. We
discuss several ways of reducing the likelihood of confusion bias in crowded
fields. Finally, several limitations of the present semi-analytic approach are
reviewed, and their effects on the present results are estimated. The simple
model presented here provides a good physical understanding of how confusion
arises in a single SIM observation, and has sufficient precision to establish
the likelihood of a bias in most cases.Comment: 28 pages, 20 figures, 1 table; to appear in December 2007 issue of
PAS
Energy Efficient Clustering and Routing in Mobile Wireless Sensor Network
A critical need in Mobile Wireless Sensor Network (MWSN) is to achieve energy
efficiency during routing as the sensor nodes have scarce energy resource. The
nodes' mobility in MWSN poses a challenge to design an energy efficient routing
protocol. Clustering helps to achieve energy efficiency by reducing the
organization complexity overhead of the network which is proportional to the
number of nodes in the network. This paper proposes a novel hybrid multipath
routing algorithm with an efficient clustering technique. A node is selected as
cluster head if it has high surplus energy, better transmission range and least
mobility. The Energy Aware (EA) selection mechanism and the Maximal Nodal
Surplus Energy estimation technique incorporated in this algorithm improves the
energy performance during routing. Simulation results can show that the
proposed clustering and routing algorithm can scale well in dynamic and energy
deficient mobile sensor network.Comment: 9 pages, 4 figure
A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data
We propose a matrix factorization technique that decomposes the resting state
fMRI (rs-fMRI) correlation matrices for a patient population into a sparse set
of representative subnetworks, as modeled by rank one outer products. The
subnetworks are combined using patient specific non-negative coefficients;
these coefficients are also used to model, and subsequently predict the
clinical severity of a given patient via a linear regression. Our
generative-discriminative framework is able to exploit the structure of rs-fMRI
correlation matrices to capture group level effects, while simultaneously
accounting for patient variability. We employ ten fold cross validation to
demonstrate the predictive power of our model on a cohort of fifty eight
patients diagnosed with Autism Spectrum Disorder. Our method outperforms
classical semi-supervised frameworks, which perform dimensionality reduction on
the correlation features followed by non-linear regression to predict the
clinical scores
Does the Superior Colliculus Control Perceptual Sensitivity or Choice Bias during Attention? Evidence from a Multialternative Decision Framework
Distinct networks in the forebrain and the midbrain coordinate to control spatial attention. The critical involvement of the superior colliculus (SC)—the central structure in the midbrain network—in visuospatial attention has been shown by four seminal, published studies in monkeys (Macaca mulatta) performing multialternative tasks. However, due to the lack of a mechanistic framework for interpreting behavioral data in such tasks, the nature of the SC's contribution to attention remains unclear. Here we present and validate a novel decision framework for analyzing behavioral data in multialternative attention tasks. We apply this framework to re-examine the behavioral evidence from these published studies. Our model is a multidimensional extension to signal detection theory that distinguishes between two major classes of attentional mechanisms: those that alter the quality of sensory information or “sensitivity,” and those that alter the selective gating of sensory information or “choice bias.” Model-based simulations and model-based analyses of data from these published studies revealed a converging pattern of results that indicated that choice-bias changes, rather than sensitivity changes, were the primary outcome of SC manipulation. Our results suggest that the SC contributes to attentional performance predominantly by generating a spatial choice bias for stimuli at a selected location, and that this bias operates downstream of forebrain mechanisms that enhance sensitivity. The findings lead to a testable mechanistic framework of how the midbrain and forebrain networks interact to control spatial attention
Physiological and clinical consequences of relief of right ventricular outflow tract obstruction late after repair of congenital heart defects.
BACKGROUND: Right ventricular outflow tract obstruction (RVOTO) is a common problem after repair of congenital heart disease. Percutaneous pulmonary valve implantation (PPVI) can treat this condition without consequent pulmonary regurgitation or cardiopulmonary bypass. Our aim was to investigate the clinical and physiological response to relieving RVOTO. METHODS AND RESULTS: We studied 18 patients who underwent PPVI for RVOTO (72% male, median age 20 years) from a total of 93 who had this procedure for various indications. All had a right ventricular outflow tract (RVOT) gradient >50 mm Hg on echocardiography without important pulmonary regurgitation (less than mild or regurgitant fraction <10% on magnetic resonance imaging [MRI]). Cardiopulmonary exercise testing, tissue Doppler echocardiography, and MRI were performed before and within 50 days of PPVI. PPVI reduced RVOT gradient (51.4 to 21.7 mm Hg, P<0.001) and right ventricular systolic pressure (72.8 to 47.3 mm Hg, P<0.001) at catheterization. Symptoms and aerobic (25.7 to 28.9 mL.kg(-1).min(-1), P=0.002) and anaerobic (14.4 to 16.2 mL.kg(-1).min(-1), P=0.002) exercise capacity improved. Myocardial systolic velocity improved acutely (tricuspid 4.8 to 5.3 cm/s, P=0.05; mitral 4.7 to 5.5 cm/s, P=0.01), whereas isovolumic acceleration was unchanged. The tricuspid annular velocity was not maintained on intermediate follow-up. Right ventricular end-diastolic volume (99.9 to 89.7 mL/m2, P<0.001) fell, whereas effective stroke volume (43.7 to 48.3 mL/m2, P=0.06) and ejection fraction (48.0% to 56.8%, P=0.01) increased. Left ventricular end-diastolic volume (72.5 to 77.4 mL/m2, P=0.145), stroke volume (45.3 to 50.6 mL/m2, P=0.02), and ejection fraction (62.6% to 65.8%, P=0.03) increased. CONCLUSIONS: PPVI relieves RVOTO, which leads to an early improvement in biventricular performance. Furthermore, it reduces symptoms and improves exercise tolerance. These findings have important implications for the management of this increasingly common condition
An infrared-submillimeter study of star-forming regions selected by the ISOSS 170um survey
Using the ISOPHOT Serendipity Survey (ISOSS) at 170um a sample of galactic
star-forming regions exhibiting very cold dust temperatures (< 20 K) and high
masses (> 100 M_sun) has been established. We characterise the star-forming
content of five regions that were selected as potential sites for early stage
high-mass star formation using SCUBA (JCMT) and Spitzer observations. In every
region we identify one to four submillimeter clumps with projected sizes
between 0.1 and 0.4 pc. The dust temperatures range from 11.6 to 21.3 K and the
estimated clump masses are 2 to 166 M_sun. Towards the majority of
submillimeter peaks we find point sources in the near- to mid-infrared. Most
are interpreted as low-mass young stellar objects but we also detect very red
sources. They probably represent very young and deeply embedded protostars that
continue to accrete clump material and may reach higher masses. Several
candidate intermediate-mass proto- or pre-main-sequence stars embedded in the
clumps are identified. A subset of four clumps may be massive enough (> 100
M_sun) to form high-mass stars and accompanying clusters. The absence of
stellar precursors with current masses in the high-mass regime leave the type
of star formation occuring in the clumps unsettled. We confirm the presence of
large fractions of cold material as derived from large-scale far-infrared
measurements which dominates the emission of most clumps and suggests that the
star-forming process will continue.Comment: 11 pages, 11 figures, accepted for publication in A&
The workings of the single member plurality electoral system in India and the need for reform
India uses single member plurality system (SMPS) to elect the members of the lower house of its national parliament and the state assemblies. Under SMPS, elections are conducted for separate geographical areas, known as constituencies or districts, and the electors cast one vote each for a candidate with the winner being the candidate who gets the plurality of votes. SMPS is traditionally defended primarily on the grounds of simplicity and its tendency to produce winning candidates, which promotes a link between constituents and their representatives. It tends to provide a clear-cut choice for voters between two main parties, and is expected to gives rise to single-party rather than coalition governments. It also has the benefit of excluding extremist parties from gaining representation, unless their support is geographically concentrated
- …
