1,616 research outputs found

    π\pi-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism

    Full text link
    Elemental carbon represents a fundamental building block of matter and the possibility of ferromagnetic order in carbon attracted widespread attention. However, the origin of magnetic order in such a light element is only poorly understood and has puzzled researchers. We present a spectromicroscopy study at room temperature of proton irradiated metal free carbon using the elemental and chemical specificity of x-ray magnetic circular dichroism (XMCD). We demonstrate that the magnetic order in the investigated system originates only from the carbon π\pi-electron system.Comment: 10 pages 3 color figure

    The role of hydrogen in room-temperature ferromagnetism at graphite surfaces

    Full text link
    We present a x-ray dichroism study of graphite surfaces that addresses the origin and magnitude of ferromagnetism in metal-free carbon. We find that, in addition to carbon π\pi states, also hydrogen-mediated electronic states exhibit a net spin polarization with significant magnetic remanence at room temperature. The observed magnetism is restricted to the top \approx10 nm of the irradiated sample where the actual magnetization reaches 15 \simeq 15 emu/g at room temperature. We prove that the ferromagnetism found in metal-free untreated graphite is intrinsic and has a similar origin as the one found in proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic

    First-principles modeling of temperature and concentration dependent solubility in the phase separating Fex_xCu1x_{1-x} alloy system

    Full text link
    We present a novel cluster-expansion (CE) approach for the first-principles modeling of temperature and concentration dependent alloy properties. While the standard CE method includes temperature effects only via the configurational entropy in Monte Carlo simulations, our strategy also covers the first-principles free energies of lattice vibrations. To this end, the effective cluster interactions of the CE have been rendered genuinely temperature dependent, so that they can include the vibrational free energies of the input structures. As a model system we use the phase-separating alloy Fe-Cu with our focus on the Fe-rich side. There, the solubility is derived from Monte Carlo simulations, whose precision had to be increased by averaging multiple CEs. We show that including the vibrational free energy is absolutely vital for the correct first-principles prediction of Cu solubility in the bcc Fe matrix: The solubility tremendously increases and is now in quantitative agreement with experimental findings

    360 degree domain wall generation in the soft layer of magnetic tunnel junctions

    Full text link
    High spatial resolution X-ray photo-emission electron microscopy technique has been used to study the influence of the dipolar coupling taking place between the NiFe and the Co ferromagnetic electrodes of micron sized, elliptical shaped magnetic tunnel junctions. The chemical selectivity of this technique allows to observe independently the magnetic domain structure in each ferromagnetic electrode. The combination of this powerful imaging technique with micromagnetic simulations allows to evidence that a 360 degree domain wall can be stabilized in the NiFe soft layer. In this letter, we discuss the origin and the formation conditions of those 360 degree domain walls evidenced experimentally and numerically

    Microwave-assisted cross-polarization of nuclear spin ensembles from optically-pumped nitrogen-vacancy centers in diamond

    Full text link
    The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular diffusion near the diamond surface compared to that in bulk, an observation consistent with present models of the microscopic structure of a fluid close to a solid interface.Comment: 7 pages, 4 figure

    The structure of the Au(111)/methylthiolate interface : new insights from near-edge X-ray absorption spectroscopy and X-ray standing waves

    Get PDF
    The local structure of the Au(111)([square root of]3×[square root of]3)R30°-methylthiolate surface phase has been investigated by S K-edge near-edge s-ray absorption fine structure (NEXAFS) both experimentally and theoretically and by experimental normal-incidence x-ray standing waves (NIXSW) at both the C and S atomic sites. NEXAFS shows not only excitation into the intramolecular sigma* S–C resonance but also into a sigma* S–Au orbital perpendicular to the surface, clearly identifying the local S headgroup site as atop a Au atom. Simulations show that it is not possible, however, to distinguish between the two possible adatom reconstruction models; a single thiolate species atop a hollow-site Au adatom or a dithiolate moiety comprising two thiolate species bonded to a bridge-bonded Au adatom. Within this dithiolate moiety a second sigma* S–Au orbital that lies near parallel to the surface has a higher energy that overlaps that of the sigma* S–C resonance. The new NIXSW data show the S–C bond to be tilted by 61° relative to the surface normal, with a preferred azimuthal orientation in , corresponding to the intermolecular nearest-neighbor directions. This azimuthal orientation is consistent with the thiolate being atop a hollow-site Au adatom, but not consistent with the originally proposed Au-adatom-dithiolate moiety. However, internal conformational changes within this species could, perhaps, render this model also consistent with the experimental data

    Spatially resolved observation of uniform precession modes in spin-valve systems

    Full text link
    Using time-resolved photoemission electron microscopy the excitation of uniform precession modes in individual domains of a weakly coupled spin-valve system has been studied. A coupling dependence of the precession frequencies has been found that can be reasonably well understood on the basis of a macrospin model. By tuning the frequency of the excitation source the uniform precession modes are excited in a resonant way.Comment: This article has been accepted by Journal of Applied Physics. After it is published, it will be found at http://jap.aip.or

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    Domain-wall depinning assisted by pure spin currents

    Full text link
    We study the depinning of domain walls by pure diffusive spin currents in a nonlocal spin valve structure based on two ferromagnetic permalloy elements with copper as the nonmagnetic spin conduit. The injected spin current is absorbed by the second permalloy structure with a domain wall and from the dependence of the wall depinning field on the spin current density we find an efficiency of 6*10^{-14}T/(A/m^2), which is more than an order of magnitude larger than for conventional current induced domain wall motion. Theoretically we reproduce this high efficiency, which arises from the surface torques exerted by the absorbed spin current that lead to efficient depinning.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
    corecore