8,871 research outputs found
Study of atmospheric and AAP objectives of cross beam experiments Final report, 23 Jan. 1967 - 9 Jan. 1968
Light beam triangulation technique for atmospheric measurement
Effects and importance of penetration and growth of lift on space vehicle response
Wind induced aerodynamic response of Saturn C-5 launch vehicle without fin
The contribution of constitutional supercooling to nucleation and grain formation
The concept of constitutional supercooling (CS) including the term itself was first described and discussed qualitatively by Rutter and Chalmers in order to understand the formation of cellular structures during the solidification of tin, and then quantified by Tiller et al. On that basis, Winegard and Chalmers further considered 'supercooling and dendritic freezing of alloys' where they described how CS promotes the heterogeneous nucleation of new crystals and the formation of an equiaxed zone. Since then the importance of CS in promoting the formation of equiaxed microstructures in both grain refined and unrefined alloys has been clearly revealed and quantified. This paper describes our current understanding of the role of CS in promoting nucleation and grain formation. It also highlights that CS, on the one hand, develops a nucleation-free zone surrounding each nucleated and growing grain and, on the other hand, protects this grain from readily remelting when temperature fluctuations occur due to convection. Further, due to the importance of the diffusion field that generates CS, recent analytical models are evaluated and compared with a numerical model. A comprehensive description of the mechanisms affecting nucleation and grain formation and the prediction of grain size is presented with reference to the influence of the casting conditions applied during the practical casting of an alloy
Electromagnetically Induced Transparency (EIT) and Autler-Townes (AT) splitting in the Presence of Band-Limited White Gaussian Noise
We investigate the effect of band-limited white Gaussian noise (BLWGN) on
electromagnetically induced transparency (EIT) and Autler-Townes (AT)
splitting, when performing atom-based continuous-wave (CW) radio-frequency (RF)
electric (E) field strength measurements with Rydberg atoms in an atomic vapor.
This EIT/AT-based E-field measurement approach is currently being investigated
by several groups around the world as a means to develop a new SI traceable RF
E-field measurement technique. For this to be a useful technique, it is
important to understand the influence of BLWGN. We perform EIT/AT based E-field
experiments with BLWGN centered on the RF transition frequency and for the
BLWGN blue-shifted and red-shifted relative to the RF transition frequency. The
EIT signal can be severely distorted for certain noise conditions (band-width,
center-frequency, and noise power), hence altering the ability to accurately
measure a CW RF E-field strength. We present a model to predict the changes in
the EIT signal in the presence of noise. This model includes AC Stark shifts
and on resonance transitions associated with the noise source. The results of
this model are compared to the experimental data and we find very good
agreement between the two.Comment: 14 page, 15 figures, 1 tabl
Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli
The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN), a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH). We made injections of the retrograde tracer Fluorogold (FG) into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl). Fos-like immunoreactivity (FLI) was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose) and bitter (0.003 M quinine) compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms
Chemical ionization tandem mass spectrometer for the in situ measurement of methyl hydrogen peroxide
A new approach for measuring gas-phase methyl hydrogen peroxide [(MHP) CH_3OOH] utilizing chemical ionization mass spectrometry is presented. Tandem mass spectrometry is used to avoid mass interferences that hindered previous attempts to measure atmospheric CH_3OOH with CF_3O− clustering chemistry. CH_3OOH has been successfully measured in situ using this technique during both airborne and ground-based campaigns. The accuracy and precision for the MHP measurement are a function of water vapor mixing ratio. Typical precision at 500 pptv MHP and 100 ppmv H_2O is ±80 pptv (2 sigma) for a 1 s integration period. The accuracy at 100 ppmv H_2O is estimated to be better than ±40%. Chemical ionization tandem mass spectrometry shows considerable promise for the determination of in situ atmospheric trace gas mixing ratios where isobaric compounds or mass interferences impede accurate measurements
The role of ultrasonic treatment in refining the as-cast grain structure during the solidification of an Al-2Cu alloy
The effect of Ultrasonic Treatment (UT) over selected temperature ranges during cooling and solidification of an Al-2Cu alloy melt on the grain structure and cooling behaviour of the alloy has been investigated using a molybdenum sonotrode introduced without preheating. UT was applied over various temperature ranges before, during and after the nucleation of primary aluminium grains. It was found that ultrasonic grain refinement was achieved only when UT was applied from more than 20 °C above the liquidus temperature until below the liquidus temperature after nucleation has occurred. Applying UT from 40 °C or 60 °C above the liquidus to just above the liquidus brings the melt to a condition that favours nucleation, survival of the nucleated grains and their subsequent transport throughout the melt. Continuing to apply UT beyond the liquidus for a short time enhances both nucleation and convection thereby ensuring the formation of a fine, uniform equiaxed grain size throughout the casting. The lack of grain refinement when UT was applied from 20 °C above the liquidus temperature or from temperatures below the liquidus temperature is attributed to the formation of a strong solidified layer on the sonotrode which hinders the effective transmission of ultrasonic irradiation into the liquid metal. The application of a preheated sonotrode showed that formation of a solid layer can be prevented by preheating the sonotrode to 285 °C. Thus, an appropriate amount of superheat of the liquid metal or sufficient preheating of the sonotrode is necessary for ultrasonic grain refinement when a sonotrode is introduced into the melt
Quantitative characterization of viscoelastic behavior in tissue-mimicking phantoms and ex vivo animal tissues.
Viscoelasticity of soft tissue is often related to pathology, and therefore, has become an important diagnostic indicator in the clinical assessment of suspect tissue. Surgeons, particularly within head and neck subsites, typically use palpation techniques for intra-operative tumor detection. This detection method, however, is highly subjective and often fails to detect small or deep abnormalities. Vibroacoustography (VA) and similar methods have previously been used to distinguish tissue with high-contrast, but a firm understanding of the main contrast mechanism has yet to be verified. The contributions of tissue mechanical properties in VA images have been difficult to verify given the limited literature on viscoelastic properties of various normal and diseased tissue. This paper aims to investigate viscoelasticity theory and present a detailed description of viscoelastic experimental results obtained in tissue-mimicking phantoms (TMPs) and ex vivo tissues to verify the main contrast mechanism in VA and similar imaging modalities. A spherical-tip micro-indentation technique was employed with the Hertzian model to acquire absolute, quantitative, point measurements of the elastic modulus (E), long term shear modulus (η), and time constant (τ) in homogeneous TMPs and ex vivo tissue in rat liver and porcine liver and gallbladder. Viscoelastic differences observed between porcine liver and gallbladder tissue suggest that imaging modalities which utilize the mechanical properties of tissue as a primary contrast mechanism can potentially be used to quantitatively differentiate between proximate organs in a clinical setting. These results may facilitate more accurate tissue modeling and add information not currently available to the field of systems characterization and biomedical research
Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications
Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC^4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM_1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and multifunctional organic nitrates. The observed EFs are compared with previous measurements of temperate wildfires, boreal forest fires, and temperate prescribed fires. The wildfires emitted high amounts of PM_1 (with organic aerosol (OA) dominating the mass) with an average EF that is more than 2 times the EFs for prescribed fires. The measured EFs were used to estimate the annual wildfire emissions of carbon monoxide, nitrogen oxides, total nonmethane organic compounds, and PM_1 from 11 western U.S. states. The estimated gas emissions are generally comparable with the 2011 National Emissions Inventory (NEI). However, our PM_1 emission estimate (1530 ± 570 Gg yr^(−1)) is over 3 times that of the NEI PM_(2.5) estimate and is also higher than the PM_(2.5) emitted from all other sources in these states in the NEI. This study indicates that the source of OA from biomass burning in the western states is significantly underestimated. In addition, our results indicate that prescribed burning may be an effective method to reduce fine particle emissions
Recommended from our members
Characterization of cutaneous and articular sensory neurons
Background: A wide range of stimuli can activate sensory neurons and neurons innervating specific tissues often have distinct properties. Here we used retrograde tracing to identify sensory neurons innervating the hind paw skin (cutaneous) and ankle/knee joints (articular), and combined immunohistochemistry and electrophysiology analysis to determine the neurochemical phenotype of cutaneous and articular neurons, as well as their electrical and chemical excitability.
Results: Immunohistochemistry analysis using RetroBeads as a retrograde tracer confirmed previous data that cutaneous and articular neurons are a mixture of myelinated and unmyelinated neurons, and the majority of both populations are peptidergic. In whole-cell patch-clamp recordings from cultured dorsal root ganglion neurons, voltage-gated inward currents and action potential parameters were largely similar between articular and cutaneous neurons, although cutaneous neuron action potentials had a longer half-peak duration. An assessment of chemical sensitivity showed that all neurons responded to a pH 5.0 solution, but that acid-sensing ion channel (ASIC) currents, determined by inhibition with the non-selective ASIC antagonist benzamil, were of a greater magnitude in cutaneous compared to articular neurons. 40 – 50% of cutaneous and articular neurons responded to capsaicin, cinnamaldehyde and menthol, indicating similar expression levels of TRPV1, TRPA1 and TRPM8 respectively. By contrast, significantly more articular neurons responded to ATP than cutaneous neurons.
Conclusion: This work makes a detailed characterization of cutaneous and articular sensory neurons, and highlights the importance of making recordings from identified neuronal populations: sensory neurons innervating different tissues have subtly different properties, possibly reflecting different functions.ISS was funded by an Erasmus for Graduate Students grant from the University of Coimbra. ZMAH and experiments were funded by an Arthritis Research Project Grant (Grant Reference 20930) to ESS. JDB was funded by a Corpus Christi College Study and Travel Grant. EStJS was funded by an Early Career Research Grant from the International Association for the Study of Pain. Thanks to Christoforos Tsantoulas for assistance with immunohistochemistry and members of the Smith lab for their technical assistance and help in preparing the manuscript.This is the final version of the article. It first appeared from SAGE via http://dx.doi.org/10.1177/174480691663638
- …
