4,113 research outputs found
Hydrostatic equilibrium and stellar structure in f(R)-gravity
We investigate the hydrostatic equilibrium of stellar structure by taking
into account the modi- fied La\'e-Emden equation coming out from f(R)-gravity.
Such an equation is obtained in metric approach by considering the Newtonian
limit of f(R)-gravity, which gives rise to a modified Poisson equation, and
then introducing a relation between pressure and density with polytropic index
n. The modified equation results an integro-differential equation, which, in
the limit f(R) \rightarrow R, becomes the standard La\'e-Emden equation. We
find the radial profiles of gravitational potential by solving for some values
of n. The comparison of solutions with those coming from General Relativity
shows that they are compatible and physically relevant.Comment: 9 pages, 1 figur
Neural Networks for Modeling and Control of Particle Accelerators
We describe some of the challenges of particle accelerator control, highlight
recent advances in neural network techniques, discuss some promising avenues
for incorporating neural networks into particle accelerator control systems,
and describe a neural network-based control system that is being developed for
resonance control of an RF electron gun at the Fermilab Accelerator Science and
Technology (FAST) facility, including initial experimental results from a
benchmark controller.Comment: 21 p
The Post-Newtonian Limit of f(R)-gravity in the Harmonic Gauge
A general analytic procedure is developed for the post-Newtonian limit of
-gravity with metric approach in the Jordan frame by using the harmonic
gauge condition. In a pure perturbative framework and by using the Green
function method a general scheme of solutions up to order is shown.
Considering the Taylor expansion of a generic function it is possible to
parameterize the solutions by derivatives of . At Newtonian order,
, all more important topics about the Gauss and Birkhoff theorem are
discussed. The corrections to "standard" gravitational potential
(-component of metric tensor) generated by an extended uniform mass
ball-like source are calculated up to order. The corrections, Yukawa
and oscillating-like, are found inside and outside the mass distribution. At
last when the limit is considered the -gravity converges
in General Relativity at level of Lagrangian, field equations and their
solutions.Comment: 16 pages, 10 figure
Axially symmetric solutions in f(R)-gravity
Axially symmetric solutions for f (R)-gravity can be derived starting from
exact spherically sym- metric solutions achieved by Noether symmetries. The
method takes advantage of a complex coordi- nate transformation previously
developed by Newman and Janis in General Relativity. An example is worked out
to show the general validity of the approach. The physical properties of the
solution are also considered.Comment: 13 pages, 1 figure, to appear in Classical and Quantum Gravity 201
Effects of balloon injury on neointimal hyperplasia in steptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats.
BACKGROUND:
The mechanisms of increased neointimal hyperplasia after coronary interventions in diabetic patients are still unknown.
METHODS AND RESULTS:
Glucose and insulin effects on in vitro vascular smooth muscle cell (VSMC) proliferation and migration were assessed. The effect of balloon injury on neointimal hyperplasia was studied in streptozotocin-induced diabetic rats with or without adjunct insulin therapy. To study the effect of balloon injury in nondiabetic rats with hyperinsulinemia, pancreatic islets were transplanted under the kidney capsule in normal rats. Glucose did not increase VSMC proliferation and migration in vitro. In contrast, insulin induced a significant increase in VSMC proliferation and migration in cell cultures. Furthermore, in VSMC culture, insulin increased MAPK activation. A reduction in neointimal hyperplasia was consistently documented after vascular injury in hyperglycemic streptozotocin-induced diabetic rats. Insulin therapy significantly increased neointimal hyperplasia in these rats. This effect of hyperinsulinemia was totally abolished by transfection on the arterial wall of the N17H-ras-negative mutant gene. Finally, after experimental balloon angioplasty in hyperinsulinemic nondiabetic islet-transplanted rats, a significant increase in neointimal hyperplasia was observed.
CONCLUSIONS:
In rats with streptozotocin-induced diabetes, balloon injury was not associated with an increase in neointimal formation. Exogenous insulin administration in diabetic rats and islet transplantation in nondiabetic rats increased both blood insulin levels and neointimal hyperplasia after balloon injury. Hyperinsulinemia through activation of the ras/MAPK pathway, rather than hyperglycemia per se, seems to be of crucial importance in determining the exaggerated neointimal hyperplasia after balloon angioplasty in diabetic animals
Spherically symmetric solutions in f(R)-gravity via Noether Symmetry Approach
We search for spherically symmetric solutions of f(R) theories of gravity via
the Noether Symmetry Approach. A general formalism in the metric framework is
developed considering a point-like f(R)-Lagrangian where spherical symmetry is
required. Examples of exact solutions are given.Comment: 17 pages, to appear in Class. Quant. Gra
Modified-Source Gravity and Cosmological Structure Formation
One way to account for the acceleration of the universe is to modify general
relativity, rather than introducing dark energy. Typically, such modifications
introduce new degrees of freedom. It is interesting to consider models with no
new degrees of freedom, but with a modified dependence on the conventional
energy-momentum tensor; the Palatini formulation of theories is one
example. Such theories offer an interesting testing ground for investigations
of cosmological modified gravity. In this paper we study the evolution of
structure in these ``modified-source gravity'' theories. In the linear regime,
density perturbations exhibit scale dependent runaway growth at late times and,
in particular, a mode of a given wavenumber goes nonlinear at a higher redshift
than in the standard CDM model. We discuss the implications of this
behavior and why there are reasons to expect that the growth will be cut off in
the nonlinear regime. Assuming that this holds in a full nonlinear analysis, we
briefly describe how upcoming measurements may probe the differences between
the modified theory and the standard CDM model.Comment: 22 pages, 6 figures, uses iopart styl
Antiangiogenic activity of semisynthetic biotechnological heparins: low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists.
OBJECTIVE:
Low-molecular-weight heparin (LMWH) exerts antitumor activity in clinical trials. The K5 polysaccharide from Escherichia coli has the same structure as the heparin precursor. Chemical and enzymatic modifications of K5 polysaccharide lead to the production of biotechnological heparin-like compounds. We investigated the fibroblast growth factor-2 (FGF2) antagonist and antiangiogenic activity of a series of LMW N,O-sulfated K5 derivatives.
METHODS AND RESULTS:
Surface plasmon resonance analysis showed that LMW-K5 derivatives bind FGF2, thus inhibiting its interaction with heparin immobilized to a BIAcore sensor chip. Interaction of FGF2 with tyrosine-kinase receptors (FGFRs), heparan sulfate proteoglycans (HSPGs), and alpha(v)beta3 integrin is required for biological response in endothelial cells. Similar to LMWH, LMW-K5 derivatives abrogate the formation of HSPG/FGF2/FGFR ternary complexes by preventing FGF2-mediated attachment of FGFR1-overexpressing cells to HSPG-bearing cells and inhibit FGF2-mediated endothelial cell proliferation. However, LMW-K5 derivatives, but not LMWH, also inhibit FGF2/alpha(v)beta3 integrin interaction and consequent FGF2-mediated endothelial cell sprouting in vitro and angiogenesis in vivo in the chick embryo chorioallantoic membrane.
CONCLUSIONS:
LMW N,O-sulfated K5 derivatives affect both HSPG/FGF2/FGFR and FGF2/alpha(v)beta3 interactions and are endowed with FGF2 antagonist and antiangiogenic activity. These compounds may provide the basis for the design of novel LMW heparin-like angiostatic compounds
- …
