1,120 research outputs found
Shape complexity and fractality of fracture surfaces of swelled isotactic polypropylene with supercritical carbon dioxide
We have investigated the fractal characteristics and shape complexity of the
fracture surfaces of swelled isotactic polypropylene Y1600 in supercritical
carbon dioxide fluid through the consideration of the statistics of the islands
in binary SEM images. The distributions of area , perimeter , and shape
complexity follow power laws , , and , with the scaling ranges spanning
over two decades. The perimeter and shape complexity scale respectively as
and in two scaling regions delimited by . The fractal dimension and shape complexity increase when the temperature
decreases. In addition, the relationships among different power-law scaling
exponents , , , , and have been derived analytically,
assuming that , , and follow power-law distributions.Comment: RevTex, 6 pages including 7 eps figure
Nanometer-scale sharpness in corner-overgrown heterostructures
A corner-overgrown GaAs/AlGaAs heterostructure is investigated with
transmission and scanning transmission electron microscopy, demonstrating
self-limiting growth of an extremely sharp corner profile of 3.5 nm width. In
the AlGaAs layers we observe self-ordered diagonal stripes, precipitating
exactly at the corner, which are regions of increased Al content measured by an
XEDS analysis. A quantitative model for self-limited growth is adapted to the
present case of faceted MBE growth, and the corner sharpness is discussed in
relation to quantum confined structures. We note that MBE corner overgrowth
maintains nm-sharpness even after microns of growth, allowing the realization
of corner-shaped nanostructures.Comment: 4 pages, 3 figure
Response of Multi-strip Multi-gap Resistive Plate Chamber
A prototype of Multi-strip Multi-gap Resistive Plate chamber (MMRPC) with
active area 40 cm 20 cm has been developed at SINP, Kolkata. Detailed
response of the developed detector was studied with the pulsed electron beam
from ELBE at Helmholtz-Zentrum Dresden-Rossendorf. In this report the response
of SINP developed MMRPC with different controlling parameters is described in
details. The obtained time resolution () of the detector after slew
correction was 91.53 ps. Position resolution measured along ()
and across () the strip was 2.80.6 cm and 0.58 cm, respectively.
The measured absolute efficiency of the detector for minimum ionizing particle
like electron was 95.81.3 . Better timing resolution of the detector
can be achieved by restricting the events to a single strip. The response of
the detector was mainly in avalanche mode but a few percentage of streamer mode
response was also observed. A comparison of the response of these two modes
with trigger rate was studiedComment: 19 pages, 26 figure
Synthesis of nanostructures in nanowires using sequential catalyst reactions.
Nanowire growth by the vapour-liquid-solid (VLS) process enables a high level of control over nanowire composition, diameter, growth direction, branching and kinking, periodic twinning, and crystal structure. The tremendous impact of VLS-grown nanowires is due to this structural versatility, generating applications ranging from solid-state lighting and single-photon sources to thermoelectric devices. Here, we show that the morphology of these nanostructures can be further tailored by using the liquid droplets that catalyse nanowire growth as a 'mixing bowl', in which growth materials are sequentially supplied to nucleate new phases. Growing within the liquid, these phases adopt the shape of faceted nanocrystals that are then incorporated into the nanowires by further growth. We demonstrate this concept by epitaxially incorporating metal-silicide nanocrystals into Si nanowires with defect-free interfaces, and discuss how this process can be generalized to create complex nanowire-based heterostructures.Supported by the National Science Foundation under Grants No. DMR-0606395 and 0907483 (YCC), ERC Grant 279342: InSituNANO (FP, SH), the National Science Council of Taiwan under Grant No. NSC-101-2112-M-009-021-MY3 (YCC), the Center for Interdisciplinary Science under the MOE-ATU project for NCTU (YCC) and the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract DE-AC02-98CH10886 (DZ and EAS).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nmat435
Efficiency determination of resistive plate chambers for fast quasi-monoenergetic neutrons
Composite detectors made of stainless steel converters and multigap resistive
plate chambers have been irradiated with quasi-monoenergetic neutrons with a
peak energy of 175MeV. The neutron detection efficiency has been determined
using two different methods. The data are in agreement with the output of Monte
Carlo simulations. The simulations are then extended to study the response of a
hypothetical array made of these detectors to energetic neutrons from a
radioactive ion beam experiment.Comment: Submitted to Eur.Phys.J. A; upgraded version correcting some typos
and updating ref.
Effect of certolizumab pegol over 96 weeks of treatment on inflammation of the spine and sacroiliac joints, as measured by MRI, and the association between clinical and MRI outcomes in patients with axial spondyloarthritis.
OBJECTIVE: To report MRI outcomes and explore the relationship between clinical remission and MRI inflammation in patients with axial spondyloarthritis (axSpA) from the RAPID-axSpA trial, including radiographic (r-)axSpA and non-radiographic (nr-)axSpA. METHODS: RAPID-axSpA (NCT01087762) was double-blind and placebo-controlled to week 24, dose-blind to week 48 and open-label to week 204. Patients were randomised to certolizumab pegol (CZP) or placebo. Placebo patients entering dose-blind were rerandomised to CZP. MRIs performed at baseline, weeks 12, 48 and 96 were scored by 2 reviewers independently: Spondyloarthritis Research Consortium of Canada (SPARCC) for sacroiliac (SI) joints; Berlin modification of the Ankylosing Spondylitis spine MRI scoring system for disease activity (Berlin) for spine. Inflammation thresholds: SPARCC≥2; Berlin>2. Remission thresholds: SPARCC<2 (SI joints); Berlin≤2 (spine); Ankylosing Spondylitis Disease Activity Score (ASDAS) inactive disease (<1.3, clinical). RESULTS: Across 163 patients in the MRI set (109 CZP; 54 placebo), week 12 mean changes from baseline in MRI scores were greater for CZP versus placebo: SPARCC: -4.8 (SD 8.6) vs -1.6 (7.8; p<0.001); Berlin: -2.9 (4.2) vs 0.2 (4.8; p<0.001). Improvements were maintained to week 96. Week 12 MRI remission was achieved by 52.6% of patients with baseline MRI inflammation in SI joints, 62.0% in the spine and 37.9% of patients with both. MRI remission rates were sustained to week 96, with similar trends in r-axSpA and nr-axSpA. At week 96, 57.5% vs 65.9% of patients achieving versus not achieving clinical remission had MRI remission. CONCLUSIONS: CZP reduced inflammation in the spine and SI joints in patients with r-axSpA and nr-axSpA, with improvements maintained over 96 weeks. Substantial proportions of patients achieved MRI remission. Concordance between clinical remission and current definitions of absence of MRI inflammation was limited. TRIAL REGISTRATION NUMBER: NCT01087762; Post-results
Temporal and spatiotemporal autocorrelation of daily concentrations of Alnus, Betula, and Corylus pollen in Poland
The aim of the study was to determine the characteristics of temporal and space–time autocorrelation of pollen counts of Alnus, Betula, and Corylus in the air of eight cities in Poland. Daily average pollen concentrations were monitored over 8 years (2001–2005 and 2009–2011) using Hirst-designed volumetric spore traps. The spatial and temporal coherence of data was investigated using the autocorrelation and cross-correlation functions. The calculation and mathematical modelling of 61 correlograms were performed for up to 25 days back. The study revealed an association between temporal variations in Alnus, Betula, and Corylus pollen counts in Poland and three main groups of factors such as: (1) air mass exchange after the passage of a single weather front (30–40 % of pollen count variation); (2) long-lasting factors (50–60 %); and (3) random factors, including diurnal variations and measurements errors (10 %). These results can help to improve the quality of forecasting models
Control and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapor Deposition
The strong interest in graphene has motivated the scalable production of high
quality graphene and graphene devices. Since large-scale graphene films
synthesized to date are typically polycrystalline, it is important to
characterize and control grain boundaries, generally believed to degrade
graphene quality. Here we study single-crystal graphene grains synthesized by
ambient CVD on polycrystalline Cu, and show how individual boundaries between
coalescing grains affect graphene's electronic properties. The graphene grains
show no definite epitaxial relationship with the Cu substrate, and can cross Cu
grain boundaries. The edges of these grains are found to be predominantly
parallel to zigzag directions. We show that grain boundaries give a significant
Raman "D" peak, impede electrical transport, and induce prominent weak
localization indicative of intervalley scattering in graphene. Finally, we
demonstrate an approach using pre-patterned growth seeds to control graphene
nucleation, opening a route towards scalable fabrication of single-crystal
graphene devices without grain boundaries.Comment: New version with additional data. Accepted by Nature Material
- …
