6,080 research outputs found
Covariant spectator theory of np scattering: Effective range expansions and relativistic deuteron wave functions
We present the effective range expansions for the 1S_0 and 3S_1 scattering
phase shifts, and the relativistic deuteron wave functions that accompany our
recent high precision fits (with chi^2/N{data} approx 1) to the 2007 world np
data below 350 MeV. The wave functions are expanded in a series of analytical
functions (with the correct asymptotic behavior at both large and small
arguments) that can be Fourier-transformed from momentum to coordinate space
and are convenient to use in any application. A fortran subroutine to compute
these wave functions can be obtained from the authors.Comment: 32 pages, 14 figure
Nucleon Resonance Effects in near Threshold
The role of the low lying nucleon resonances beyond the in the
reaction near threshold is shown to be numerically significant
by a calculation, which takes into account the pion re-scattering contribution
described by chiral perturbation theory and the short-range mechanisms that are
implied by the nucleon-nucleon interaction model. The intermediate N(1440)
(P) resonance is excited by the short-range exchange mechanisms, while
the N(1535) () and N(1520) () resonances are excited by
and meson exchange, respectively. The increases the calculated
cross section, whereas the and resonances decrease it. The
calculation takes full account of the initial and final state interactions.Comment: Revised accepted versio
Metastable States in High Order Short-Range Spin Glasses
The mean number of metastable states in higher order short-range spin
glasses is estimated analytically using a variational method introduced by
Tanaka and Edwards for very large coordination numbers. For lattices with small
connectivities, numerical simulations do not show any significant dependence on
the relative positions of the interacting spins on the lattice, indicating thus
that these systems can be described by a few macroscopic parameters. As an
extremely anisotropic model we consider the low autocorrelated binary spin
model and we show through numerical simulations that its landscape has an
exceptionally large number of local optima
Quantum control of electron--phonon scatterings in artificial atoms
The phonon-induced dephasing dynamics in optically excited semiconductor
quantum dots is studied within the frameworks of the independent Boson model
and optimal control. We show that appropriate tailoring of laser pulses allows
a complete control of the optical excitation despite the phonon dephasing, a
finding in marked contrast to other environment couplings.Comment: to appear in Phys. Rev. Let
Optimized magneto-optical isolator designs inspired by seedlayer-free terbium iron garnets with opposite chirality
Simulations demonstrate that undoped yttrium iron garnet (YIG) seedlayers cause reduced Faraday rotation in silicon-on-insulator (SOI) waveguides with Ce-doped YIG claddings. Undoped seedlayers are required for the crystallization of the magneto-optical Ce:YIG claddings, but they diminish the interaction of the Ce:YIG with the guided modes. Therefore new magneto-optical garnets, terbium iron garnet (TIG) and bismuth-doped TIG (Bi:TIG), are introduced that can be integrated directly on Si and quartz substrates without seedlayers. The Faraday rotations of TIG and Bi:TIG films at 1550nm were measured to be +500 and -500°/cm, respectively. Simulations show that these new garnets have the potential to significantly mitigate the negative impact of the seedlayers under Ce:YIG claddings. The successful growth of TIG and Bi:TIG on low-index fused quartz inspired novel garnet-core waveguide isolator designs, simulated using finite difference time domain (FDTD) methods. These designs use alternating segments of positive and negative Faraday rotation for push-pull quasi phase matching in order to overcome birefringence in waveguides with rectangular cross-sections
Covariant equations for the three-body bound state
The covariant spectator (or Gross) equations for the bound state of three
identical spin 1/2 particles, in which two of the three interacting particles
are always on shell, are developed and reduced to a form suitable for numerical
solution. The equations are first written in operator form and compared to the
Bethe-Salpeter equation, then expanded into plane wave momentum states, and
finally expanded into partial waves using the three-body helicity formalism
first introduced by Wick. In order to solve the equations, the two-body
scattering amplitudes must be boosted from the overall three-body rest frame to
their individual two-body rest frames, and all effects which arise from these
boosts, including the Wigner rotations and rho-spin decomposition of the
off-shell particle, are treated exactly. In their final form, the equations
reduce to a coupled set of Faddeev-like double integral equations with
additional channels arising from the negative rho-spin states of the off-shell
particle.Comment: 57 pages, RevTeX, 6 figures, uses epsf.st
Machine-interpretable dataset and service descriptions for heterogeneous data access and retrieval
Effect of bonding of a CO molecule on the conductance of atomic metal wires
We have measured the effect of bonding of a CO molecule on the conductance of
Au, Cu, Pt, and Ni atomic contacts at 4.2 K. When CO gas is admitted to the
metal nano contacts, a conductance feature appears in the conductance histogram
near 0.5 of the quantum unit of conductance, for all metals. For Au, the
intensity of this fractional conductance feature can be tuned with the bias
voltage, and it disappears at high bias voltage (above 200 mV). The
bonding of CO to Au appears to be weakest, and associated with monotomic Au
wire formation.Comment: 6 figure
- …
