842 research outputs found
Guiding Trustful Behavior: The Role of Accessible Content and Accessibility Experiences
Trust has been identified as a key ingredient to the prosperity of close relationships, organizations, and societies. While research mainly focused on the antecedents and consequences of trust, much less is known about how individuals assess whether there are enough reasons to warrant trustful action. Two experiments explored the how and when of this assessment, suggesting that antecedents may not only be integrated as content information per se (as generally assumed), but in a feeling-based summary form. Specifically, our results show that the ease or difficulty associated with the identification of antecedents to trust may guide trustful behavior. Furthermore, it is shown that such a feeling-based influence is particularly likely to occur in conditions of personal certainty. Together these results extend prior research in the domains of trust and economic games, and further attest to the fundamental role cognitive feelings play in social life
Laser induced breakdown of the magnetic field reversal symmetry in the propagation of unpolarized light
We show how a medium, under the influece of a coherent control field which is
resonant or close to resonance to an appropriate atomic transition, can lead to
very strong asymmetries in the propagation of unpolarized light when the
direction of the magnetic field is reversed. We show how EIT can be used to
mimic effects occuring in natural systems and that EIT can produce very large
asymmetries as we use electric dipole allowed transitions. Using density matrix
calculations we present results for the breakdown of the magnetic field
reversal symmetry for two different atomic configurations.Comment: RevTex, 6 pages, 10 figures, Two Column format, submitted to Phys.
Rev.
Impact of Radiotherapy, Chemotherapy and Surgery in Multimodal Treatment of Locally Advanced Esophageal Cancer
Objectives: It was the aim of this study to assess our institutional experience with definitive chemoradiation (CRT) versus induction chemotherapy followed by CRT with or without surgery (C-CRT/S) in esophageal cancer. Methods: We retrospectively analyzed 129 institutional patients with locally advanced esophageal cancer who had been treated by either CRT in analogy to the RTOG 8501 trial (n = 78) or C-CRT/S (n = 51). Results: The median, 2-and 5-year overall survival (OS) of the entire collective was 17.6 months, 42 and 24%, respectively, without a significant difference between the CRT and C-CRT/S groups. In C-CRT/S patients, surgery statistically improved the locoregional control (LRC) rates (2-year LRC 73.6 vs. 21.2%; p = 0.003); however, this was translated only into a trend towards improved OS (p = 0.084). The impact of escalated radiation doses (>= 60.0 vs. <60.0 Gy) on LRC was detectable only in T1-3 N0-1 M0 patients of the CRT group (2-year LRC 77.8 vs. 42.3%; p = 0.036). Conclusion: Definitive CRT and a trimodality approach including surgery (C-CRT/S) had a comparable outcome in this unselected patient collective. Surgery and higher radiation doses improve LRC rates in subgroups of patients, respectively, but without effect on OS. Copyright (C) 2012 S. Karger AG, Base
Limits on Dark Matter Effective Field Theory Parameters with CRESST-II
CRESST is a direct dark matter search experiment, aiming for an observation
of nuclear recoils induced by the interaction of dark matter particles with
cryogenic scintillating calcium tungstate crystals. Instead of confining
ourselves to standard spin-independent and spin-dependent searches, we
re-analyze data from CRESST-II using a more general effective field theory
(EFT) framework. On many of the EFT coupling constants, improved exclusion
limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure
The contribution of Fermi-2LAC blazars to the diffuse TeV-PeV neutrino flux
The recent discovery of a diffuse cosmic neutrino flux extending up to PeV
energies raises the question of which astrophysical sources generate this
signal. One class of extragalactic sources which may produce such high-energy
neutrinos are blazars. We present a likelihood analysis searching for
cumulative neutrino emission from blazars in the 2nd Fermi-LAT AGN catalogue
(2LAC) using an IceCube neutrino dataset 2009-12 which was optimised for the
detection of individual sources. In contrast to previous searches with IceCube,
the populations investigated contain up to hundreds of sources, the largest one
being the entire blazar sample in the 2LAC catalogue. No significant excess is
observed and upper limits for the cumulative flux from these populations are
obtained. These constrain the maximum contribution of the 2LAC blazars to the
observed astrophysical neutrino flux to be or less between around 10
TeV and 2 PeV, assuming equipartition of flavours at Earth and a single
power-law spectrum with a spectral index of . We can still exclude that
the 2LAC blazars (and sub-populations) emit more than of the observed
neutrinos up to a spectral index as hard as in the same energy range.
Our result takes into account that the neutrino source count distribution is
unknown, and it does not assume strict proportionality of the neutrino flux to
the measured 2LAC -ray signal for each source. Additionally, we
constrain recent models for neutrino emission by blazars.Comment: 18 pages, 22 figure
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
Resonant nonlinear magneto-optical effects in atoms
In this article, we review the history, current status, physical mechanisms,
experimental methods, and applications of nonlinear magneto-optical effects in
atomic vapors. We begin by describing the pioneering work of Macaluso and
Corbino over a century ago on linear magneto-optical effects (in which the
properties of the medium do not depend on the light power) in the vicinity of
atomic resonances, and contrast these effects with various nonlinear
magneto-optical phenomena that have been studied both theoretically and
experimentally since the late 1960s. In recent years, the field of nonlinear
magneto-optics has experienced a revival of interest that has led to a number
of developments, including the observation of ultra-narrow (1-Hz)
magneto-optical resonances, applications in sensitive magnetometry, nonlinear
magneto-optical tomography, and the possibility of a search for parity- and
time-reversal-invariance violation in atoms.Comment: 51 pages, 23 figures, to appear in Rev. Mod. Phys. in Oct. 2002,
Figure added, typos corrected, text edited for clarit
Lowering IceCube’s energy threshold for point source searches in the southern sky
Observation of a point source of astrophysical neutrinos would be a "smoking gun" signature of a cosmic-ray accelerator. While IceCube has recently discovered a diffuse flux of astrophysical neutrinos, no localized point source has been observed. Previous IceCube searches for point sources in the southern sky were restricted by either an energy threshold above a few hundred TeV or poor neutrino angular resolution. Here we present a search for southern sky point sources with greatly improved sensitivities to neutrinos with energies below 100 TeV. By selecting charged-current nu(mu) interacting inside the detector, we reduce the atmospheric background while retaining efficiency for astrophysical neutrino-induced events reconstructed with sub-degree angular resolution. The new event sample covers three years of detector data and leads to a factor of 10 improvement in sensitivity to point sources emitting below 100 TeV in the southern sky. No statistically significant evidence of point sources was found, and upper limits are set on neutrino emission from individual sources. A posteriori analysis of the highest-energy (similar to 100 TeV) starting event in the sample found that this event alone represents a 2.8 sigma deviation from the hypothesis that the data consists only of atmospheric background
- …
