2,015 research outputs found
Darth Fader: Using wavelets to obtain accurate redshifts of spectra at very low signal-to-noise
We present the DARTH FADER algorithm, a new wavelet-based method for
estimating redshifts of galaxy spectra in spectral surveys that is particularly
adept in the very low SNR regime. We use a standard cross-correlation method to
estimate the redshifts of galaxies, using a template set built using a PCA
analysis on a set of simulated, noise-free spectra. Darth Fader employs wavelet
filtering to both estimate the continuum & to extract prominent line features
in each galaxy spectrum. A simple selection criterion based on the number of
features present in the spectrum is then used to clean the catalogue: galaxies
with fewer than six total features are removed as we are unlikely to obtain a
reliable redshift estimate. Applying our wavelet-based cleaning algorithm to a
simulated testing set, we successfully build a clean catalogue including
extremely low signal-to-noise data (SNR=2.0), for which we are able to obtain a
5.1% catastrophic failure rate in the redshift estimates (compared with 34.5%
prior to cleaning). We also show that for a catalogue with uniformly mixed SNRs
between 1.0 & 20.0, with realistic pixel-dependent noise, it is possible to
obtain redshifts with a catastrophic failure rate of 3.3% after cleaning (as
compared to 22.7% before cleaning). Whilst we do not test this algorithm
exhaustively on real data, we present a proof of concept of the applicability
of this method to real data, showing that the wavelet filtering techniques
perform well when applied to some typical spectra from the SDSS archive. The
Darth Fader algorithm provides a robust method for extracting spectral features
from very noisy spectra. The resulting clean catalogue gives an extremely low
rate of catastrophic failures, even when the spectra have a very low SNR. For
very large sky surveys, this technique may offer a significant boost in the
number of faint galaxies with accurately determined redshifts.Comment: 22 pages, 15 figures. Accepted for publication in Astronomy &
Astrophysic
Very high quality image restoration by combining wavelets and curvelets
We outline digital implementations of two newly developed multiscale representation systems, namely, the ridgelet and curvelet transforms. We apply these digital transforms to the problem of restoring an image from noisy data and compare our results with those obtained via well established methods based on the thresholding of wavelet coefficients. We develop a methodology to combine wavelets together these new systems to perform noise removal by exploiting all these systems simultaneously. The results of the combined reconstruction exhibits clear advantages over any individual system alone. For example, the residual error contains essentially no visually intelligible structure: no structure is lost in the reconstruction
Spherical Needlets for CMB Data Analysis
We discuss Spherical Needlets and their properties. Needlets are a form of
spherical wavelets which do not rely on any kind of tangent plane approximation
and enjoy good localization properties in both pixel and harmonic space;
moreover needlets coefficients are asymptotically uncorrelated at any fixed
angular distance, which makes their use in statistical procedures very
promising. In view of these properties, we believe needlets may turn out to be
especially useful in the analysis of Cosmic Microwave Background (CMB) data on
the incomplete sky, as well as of other cosmological observations. As a final
advantage, we stress that the implementation of needlets is computationally
very convenient and may rely completely on standard data analysis packages such
as HEALPix.Comment: 7 pages, 7 figure
Spectral evolution and polarization of variable structures in the pulsar wind nebula of PSR B0540-69.3
We present high spatial resolution optical imaging and polarization
observations of the PSR B0540-69.3 and its highly dynamical pulsar wind nebula
(PWN) performed with HST, and compare them with X-ray data obtained with the
Chandra X-ray Observatory. We have studied the bright region southwest of the
pulsar where a bright "blob" is seen in 1999. We show that it may be a result
of local energy deposition around 1999, and that the emission from this then
faded away. Polarization data from 2007 show that the polarization properties
show dramatic spatial variations at the 1999 blob position arguing for a local
process. Several other positions along the pulsar-"blob" orientation show
similar changes in polarization, indicating previous recent local energy
depositions. In X-rays, the spectrum steepens away from the "blob" position,
faster orthogonal to the pulsar-"blob" direction than along this axis of
orientation. This could indicate that the pulsar-"blob" orientation is an axis
along where energy in the PWN is mainly injected, and that this is then
mediated to the filaments in the PWN by shocks. We highlight this by
constructing an [S II]-to-[O III]-ratio map. We argue, through modeling, that
the high [S II]/[O III] ratio is not due to time-dependent photoionization
caused by possible rapid Xray emission variations in the "blob" region. We have
also created a multiwavelength energy spectrum for the "blob" position showing
that one can, to within 2sigma, connect the optical and X-ray emission by a
single power law. We obtain best power-law fits for the X-ray spectrum if we
include "extra" oxygen, in addition to the oxygen column density in the
interstellar gas of the Large Magellanic Cloud and the Milky Way. This oxygen
is most naturally explained by the oxygen-rich ejecta of the supernova remnant.
The oxygen needed likely places the progenitor mass in the 20 - 25 Msun range.Comment: Accepted by MNRAS on December 6th 2010, 18 pages, 15 figures. The
article with full resolution figures is available here
ftp://ftp.astro.su.se/pub/peter/papers/pwn0540_2010_corrected.pd
The application of a Trous wave filtering and Monte Carlo analysis on SECIS 2001 solar eclipse observations
8000 images of the Solar corona were captured during the June 2001 total
Solar eclipse. New software for the alignment of the images and an automated
technique for detecting intensity oscillations using multi scale wavelet
analysis were developed. Large areas of the images covered by the Moon and the
upper corona were scanned for oscillations and the statistical properties of
the atmospheric effects were determined. The a Trous wavelet transform was used
for noise reduction and Monte Carlo analysis as a significance test of the
detections. The effectiveness of those techniques is discussed in detail.Comment: 17 pages, 8 figures, accepted by Solar Physics Journal for
publication in Topical Issue: "Frontiers in Solar Image Processing
Dust in an extremely metal-poor galaxy: mid-infrared observations of SBS 0335-052
The metal deficient (Z = Z_sun/41) Blue Compact Dwarf Galaxy (BCD) SBS
0335-052 was observed with ISOCAM between 5 and 17 mic. With a L_12mic/L_B
ratio of 2.15, the galaxy is unexpectedly bright in the mid-infrared for such a
low-metallicity object. The mid-infrared spectrum shows no sign of the
Unidentified Infrared Bands, which we interpret as an effect of the destruction
of their carriers by the very high UV energy density in SBS 0335-052. The
spectral energy distribution (SED) is dominated by a very strong continuum
which makes the ionic lines of [SIV] and [NeIII] very weak. From 5 to 17 mic,
the SED can be fitted with a grey-body spectrum, modified by an extinction law
similar to that observed toward the Galactic Center, with an optical depth of
A_V~19-21 mag. Such a large optical depth implies that a large fraction (as
much as ~ 75%) of the current star-formation activity in SBS 0335-052 is hidden
by dust with a mass between 3x10^3 M_sun and 5x10^5 M_sun. Silicate grains are
present as silicate extinction bands at 9.7 and 18 mic can account for the
unusual shape of the MIR spectrum of SBS 0335-052. It is remarkable that such a
nearly primordial environment contains as much dust as galaxies which are 10
times more metal-rich. If the hidden star formation in SBS 0335-052 is typical
of young galaxies at high redshifts, then the cosmic star formation rate
derived from UV/optical fluxes would be underestimated.Comment: 13 pages, 4 figures, requires aaspp4.sty, accepted in Ap
- …
