1,077 research outputs found

    Performance constraints and compensation for teleoperation with delay

    Get PDF
    A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs

    Non-Newtonian Mechanics

    Get PDF
    The classical motion of spinning particles can be described without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincare' group; and only requiring the conservation of the linear and angular momenta we derive the zitterbewegung: namely the decomposition of the 4-velocity in the newtonian constant term p/m and in a non-newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating Special Relativity, provided that the energy-momentum moves along the worldline of the center-of-mass. Moreover, a non-linear, non-constant relation holds between the time durations measured in different reference frames. Newtonian Mechanics is re-obtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Introducing a Lagrangian containing also derivatives of the 4-velocity we get a new equation of the motion, actually a generalization of the Newton Law a=F/m. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin and analyze the general solution of the Eulero-Lagrange equation for Dirac particles. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.Comment: LaTeX; 27 page

    Complex magnetism of lanthanide intermetallics unravelled

    Get PDF
    We explain a profound complexity of magnetic interactions of some technologically relevant gadolinium intermetallics using an ab-initio electronic structure theory which includes disordered local moments and strong ff-electron correlations. The theory correctly finds GdZn and GdCd to be simple ferromagnets and predicts a remarkably large increase of Curie temperature with pressure of +1.5 K kbar1^{-1} for GdCd confirmed by our experimental measurements of +1.6 K kbar1^{-1}. Moreover we find the origin of a ferromagnetic-antiferromagnetic competition in GdMg manifested by non-collinear, canted magnetic order at low temperatures. Replacing 35\% of the Mg atoms with Zn removes this transition in excellent agreement with longstanding experimental data.Comment: 11 pages, 4 figure

    Electronic structure and x-ray magnetic dichroism in random substitutional alloys of f-electron elements

    Get PDF
    The Koringa-Kohn-Rostoker —coherent-potential-approximation method combines multiple-scattering theory and the coherent-potential approximation to calculate the electronic structure of random substitutional alloys of transition metals. In this paper we describe the generalization of this theory to describe f-electron alloys. The theory is illustrated with a calculation of the electronic structure and magnetic dichroism curves for a random substitutional alloy containing rare-earth or actinide elements from first principles

    Local Charge Excesses in Metallic Alloys: a Local Field Coherent Potential Approximation Theory

    Full text link
    Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in the whole crystal. By including local external fields in the single site Coherent Potential Approximation theory, we develop a novel theoretical scheme in which the local charge excesses for random alloys can be obtained as the responses to local external fields. Our model maintains all the computational advantages of a single site theory but allows for full charge relaxation at the impurity sites. Through applications to CuPd and CuZn alloys, we find that, as a general rule, non linear charge rearrangements occur at the impurity site as a consequence of the complex phenomena related with the electronic screening of the external potential. This nothwithstanding, we observe that linear relations hold between charge excesses and external potentials, in quantitative agreement with the mentioned supercell calculations, and well beyond the limits of linearity for any other site property.Comment: 11 pages, 1 table, 7 figure

    The onset of magnetic order in fcc-Fe films on Cu(100)

    Full text link
    On the basis of a first-principles electronic structure theory of finite temperature metallic magnetism in layered materials, we investigate the onset of magnetic order in thin (2-8 layers) fcc-Fe films on Cu(100) substrates. The nature of this ordering is altered when the systems are capped with copper. Indeed we find an oscillatory dependence of the Curie temperatures as a function of Cu-cap thickness, in excellent agreement with experimental data. The thermally induced spin-fluctuations are treated within a mean-field disordered local moment (DLM) picture and give rise to layer-dependent `local exchange splittings' in the electronic structure even in the paramagnetic phase. These features determine the magnetic intra- and interlayer interactions which are strongly influenced by the presence and extent of the Cu cap.Comment: 13 pages, 3 figure

    Phase stability analysis in Fe-Pt and Co-Pt alloy systems: An augmented space study

    Full text link
    We have studied the problem of phase stability in Fe-Pt and Co-Pt alloy systems. We have used the orbital peeling technique in the conjunction of augmented space recursion based on the tight binding linear orbital method as the method for the calculation of pair interaction energies. In particular, we have generalized our earlier technique to take into account of magnetic effects for the cases where the magnetic transition is higher than the order disorder chemical transition temperature as in the case of Co3_3Pt. Our theoretical results obtained within this framework successfully reproduce the experimentally observed trends.Comment: 17 pages, 9 Figures. Accepted for publication in Journal of Physics : Condensed Matte

    Investigation of the nonlocal coherent-potential approximation

    Full text link
    Recently the nonlocal coherent-potential approximation (NLCPA) has been introduced by Jarrell and Krishnamurthy for describing the electronic structure of substitutionally disordered systems. The NLCPA provides systematic corrections to the widely used coherent-potential approximation (CPA) whilst preserving the full symmetry of the underlying lattice. Here an analytical and systematic numerical study of the NLCPA is presented for a one-dimensional tight-binding model Hamiltonian, and comparisons with the embedded cluster method (ECM) and molecular coherent potential approximation (MCPA) are made.Comment: 18 pages, 5 figure

    Differential stress reaction of human colon cells to oleic-acid-stabilized and unstabilized ultrasmall iron oxide nanoparticles.

    Get PDF
    Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs
    corecore