820 research outputs found

    Local Fault-tolerant Quantum Computation

    Full text link
    We analyze and study the effects of locality on the fault-tolerance threshold for quantum computation. We analytically estimate how the threshold will depend on a scale parameter r which estimates the scale-up in the size of the circuit due to encoding. We carry out a detailed semi-numerical threshold analysis for concatenated coding using the 7-qubit CSS code in the local and `nonlocal' setting. First, we find that the threshold in the local model for the [[7,1,3]] code has a 1/r dependence, which is in correspondence with our analytical estimate. Second, the threshold, beyond the 1/r dependence, does not depend too strongly on the noise levels for transporting qubits. Beyond these results, we find that it is important to look at more than one level of concatenation in order to estimate the threshold and that it may be beneficial in certain places, like in the transportation of qubits, to do error correction only infrequently.Comment: REVTeX, 44 pages, 19 figures, to appear in Physical Review

    Quantum Teleportation is a Universal Computational Primitive

    Get PDF
    We present a method to create a variety of interesting gates by teleporting quantum bits through special entangled states. This allows, for instance, the construction of a quantum computer based on just single qubit operations, Bell measurements, and GHZ states. We also present straightforward constructions of a wide variety of fault-tolerant quantum gates.Comment: 6 pages, REVTeX, 6 epsf figure

    Numerical simulation of information recovery in quantum computers

    Full text link
    Decoherence is the main problem to be solved before quantum computers can be built. To control decoherence, it is possible to use error correction methods, but these methods are themselves noisy quantum computation processes. In this work we study the ability of Steane's and Shor's fault-tolerant recovering methods, as well a modification of Steane's ancilla network, to correct errors in qubits. We test a way to measure correctly ancilla's fidelity for these methods, and state the possibility of carrying out an effective error correction through a noisy quantum channel, even using noisy error correction methods.Comment: 38 pages, Figures included. Accepted in Phys. Rev. A, 200

    Pulsed force sequences for fast phase-insensitive quantum gates in trapped ions

    Full text link
    We show how to create quantum gates of arbitrary speed between trapped ions, using a laser walking wave, with complete insensitivity to drift of the optical phase, and requiring cooling only to the Lamb-Dicke regime. We present pulse sequences that satisfy the requirements and are easy to produce in the laboratory.Comment: 11 pages, 3 figure

    Holonomic quantum computation in decoherence-free subspaces

    Full text link
    We show how to realize, by means of non-abelian quantum holonomies, a set of universal quantum gates acting on decoherence-free subspaces and subsystems. In this manner we bring together the quantum coherence stabilization virtues of decoherence-free subspaces and the fault-tolerance of all-geometric holonomic control. We discuss the implementation of this scheme in the context of quantum information processing using trapped ions and quantum dots.Comment: 4 pages, no figures. v2: minor changes. To appear in PR

    Security of Quantum Key Distribution with Coherent States and Homodyne Detection

    Full text link
    We assess the security of a quantum key distribution protocol relying on the transmission of Gaussian-modulated coherent states and homodyne detection. This protocol is shown to be equivalent to a squeezed state protocol based on a CSS code construction, and is thus provably secure against any eavesdropping strategy. We also briefly show how this protocol can be generalized in order to improve the net key rate.Comment: 7 page

    Quantum Computing with Very Noisy Devices

    Full text link
    In theory, quantum computers can efficiently simulate quantum physics, factor large numbers and estimate integrals, thus solving otherwise intractable computational problems. In practice, quantum computers must operate with noisy devices called ``gates'' that tend to destroy the fragile quantum states needed for computation. The goal of fault-tolerant quantum computing is to compute accurately even when gates have a high probability of error each time they are used. Here we give evidence that accurate quantum computing is possible with error probabilities above 3% per gate, which is significantly higher than what was previously thought possible. However, the resources required for computing at such high error probabilities are excessive. Fortunately, they decrease rapidly with decreasing error probabilities. If we had quantum resources comparable to the considerable resources available in today's digital computers, we could implement non-trivial quantum computations at error probabilities as high as 1% per gate.Comment: 47 page

    Quantum Convolutional Error Correction Codes

    Full text link
    I report two general methods to construct quantum convolutional codes for quantum registers with internal NN states. Using one of these methods, I construct a quantum convolutional code of rate 1/4 which is able to correct one general quantum error for every eight consecutive quantum registers.Comment: To be reported in the 1st NASA Conf. on Quantum Comp., uses llncs.sty, 12 page

    All Optical Cellular Quantum Computer having Ancilla Bits for Operations in Each Cell

    Get PDF
    A quantum cellular network with a qubit and ancilla bits in each cell is proposed. The whole circuit works only with the help of external optical pulse sequences. In the operation, some of the ancilla bits are activated, and autonomous single- and two-qubit operations are made. In the sleep mode of a cell, the decoherence of the qubit is negligibly small. Since only two cells at most are active at once, the coherence can be maintained for a sufficiently long time for practical purposes. A device structure using a quantum dot array with possible operation and measurement schemes is also proposed.Comment: 14 pages, 5 figures RevTeX ;a single sentense is modified for the clarit
    corecore