513 research outputs found

    Particle Dark Energy

    Full text link
    We explore the physics of a gas of particles interacting with a condensate that spontaneously breaks Lorentz invariance. The equation of state of this gas varies from 1/3 to less than -1 and can lead to the observed cosmic acceleration. The particles are always stable. In our particular class of models these particles are fermions with a chiral coupling to the condensate. They may behave as relativistic matter at early times, produce a brief period where they dominate the expansion with w<0 today, and behave as matter at late time. There are no small parameters in our models, which generically lead to dark energy clustering and, depending on the choice of parameters, smoothing of small scale power.Comment: 8 pages, 5 figures; minor update with added refs; version appearing in Phys. Rev.

    Line Broadening in Field Metal-poor Red Giant and Red Horizontal Branch Stars

    Get PDF
    We report 349 radial velocities for 45 metal-poor field red giant and red horizontal branch stars. We have have identified one new spectroscopic binary, HD 4306, and one possible such system, HD 184711. We also report 57 radial velocities for 11 of the 91 stars reported on previously by Carney et al. (2003). As was found in the previous study, radial velocity "jitter" is present in many of the most luminous stars. Excluding stars showing spectroscopic binary orbital motion, all 7 of the red giants with M(V) <= -2.0 display jitter, as well as 3 of the 14 stars with -2.0 <= M(V) <= -1.4. We have also measured line broadening in all of the new spectra, using synthetic spectra as templates. The most luminous red giants show significant line broadening, as do many of the red horizontal branch stars, and we discuss briefly possible causes.Comment: To appear in the Astronomical Journa

    HAT-P-4b: A metal-rich low-density transiting hot Jupiter

    Get PDF
    We describe the discovery of HAT-P-4b, a low-density extrasolar planet transiting BD+36 2593, a V = 11.2 mag slightly evolved metal-rich late F star. The planet's orbital period is 3.056536+/-0.000057 d with a mid-transit epoch of 2,454,245.8154 +/- 0.0003 (HJD). Based on high-precision photometric and spectroscopic data, and by using transit light curve modeling, spectrum analysis and evolutionary models, we derive the following planet parameters: Mp= 0.68 +/- 0.04 MJ, Rp= 1.27 +/- 0.05 RJ, rho = 0.41 +/- 0.06 g cm-3 and a = 0.0446 +/- 0.0012 AU. Because of its relatively large radius, together with its assumed high metallicity of that of its parent star, this planet adds to the theoretical challenges to explain inflated extrasolar planets.Comment: 5 pages, accepted for publication in ApJ

    HAT-P-5b: A Jupiter-like hot Jupiter Transiting a Bright Star

    Get PDF
    We report the discovery of a planet transiting a moderately bright (V = 12.00) G star, with an orbital period of 2.788491 +/-0.000025 days. From the transit light curve we determine that the radius of the planet is Rp = 1.257 +/- 0.053 RJup. HAT-P-5b has a mass of Mp = 1.06 +/- 0.11 MJup, similar to the average mass of previously-known transiting exoplanets, and a density of rho = 0.66 +/- 0.11 g cm^-3 . We find that the center of transit is Tc = 2,454,241.77663 +/- 0.00022 (HJD), and the total transit duration is 0.1217 +/- 0.0012 days.Comment: 5 pages, submitted to APJ

    HAT-P-32b and HAT-P-33b: Two Highly Inflated Hot Jupiters Transiting High-jitter Stars

    Get PDF
    We report the discovery of two exoplanets transiting high-jitter stars. HAT-P-32b orbits the bright V = 11.289 late-F-early-G dwarf star GSC 3281-00800, with a period P = 2.150008 ± 0.000001 d. The stellar and planetary masses and radii depend on the eccentricity of the system, which is poorly constrained due to the high-velocity jitter (~80 m s^(–1)). Assuming a circular orbit, the star has a mass of 1.16 ± 0.04 M_☉ and radius of 1.22 ± 0.02 R_☉, while the planet has a mass of 0.860 ± 0.164 M_J and a radius of 1.789 ± 0.025 R_J. The second planet, HAT-P-33b, orbits the bright V = 11.188 late-F dwarf star GSC 2461-00988, with a period P = 3.474474 ± 0.000001 d. As for HAT-P-32, the stellar and planetary masses and radii of HAT-P-33 depend on the eccentricity, which is poorly constrained due to the high jitter (~50 m s^(–1)). In this case, spectral line bisector spans (BSs) are significantly anti-correlated with the radial velocity residuals, and we are able to use this correlation to reduce the residual rms to ~35 m s^(–1). We find that the star has a mass of 1.38 ± 0.04 M_☉ and a radius of 1.64 ± 0.03 R_☉ while the planet has a mass of 0.762 ± 0.101 M_J and a radius of 1.686 ± 0.045 R_J for an assumed circular orbit. Due to the large BS variations exhibited by both stars we rely on detailed modeling of the photometric light curves to rule out blend scenarios. Both planets are among the largest radii transiting planets discovered to date

    HAT-P-18b and HAT-P-19b: Two Low-Density Saturn-Mass Planets Transiting Metal-Rich K Stars

    Get PDF
    We report the discovery of two new transiting extrasolar planets. HAT-P-18b orbits the V=12.759 K2 dwarf star GSC 2594-00646, with a period P=5.508023+-0.000006 d, transit epoch Tc=2454715.02174+-0.00020 (BJD), and transit duration 0.1131+-0.0009 d. The host star has a mass of 0.77+-0.03 Msun, radius of 0.75+-0.04 Rsun, effective temperature 4803+-80 K, and metallicity [Fe/H]=+0.10+-0.08. The planetary companion has a mass of 0.197+-0.013 Mjup, and radius of 0.995+-0.052 Rjup yielding a mean density of 0.25+-0.04 g cm-3. HAT-P-19b orbits the V=12.901 K1 dwarf star GSC 2283-00589, with a period P=4.008778+-0.000006 d, transit epoch Tc=2455091.53417+-0.00034 (BJD), and transit duration 0.1182+-0.0014 d. The host star has a mass of 0.84+-0.04 Msun, radius of 0.82+-0.05 Rsun, effective temperature 4990+-130 K, and metallicity [Fe/H]=+0.23+-0.08. The planetary companion has a mass of 0.292+-0.018 Mjup, and radius of 1.132+-0.072 Rjup yielding a mean density of 0.25+-0.04 g cm-3. The radial velocity residuals for HAT-P-19 exhibit a linear trend in time, which indicates the presence of a third body in the system. Comparing these observations with theoretical models, we find that HAT-P-18b and HAT-P-19b are each consistent with a hydrogen-helium dominated gas giant planet with negligible core mass. HAT-P-18b and HAT-P-19b join HAT-P-12b and WASP-21b in an emerging group of low-density Saturn-mass planets, with negligible inferred core masses. However, unlike HAT-P-12b and WASP-21b, both HAT-P-18b and HAT-P-19b orbit stars with super-solar metallicity. This calls into question the heretofore suggestive correlation between the inferred core mass and host star metallicity for Saturn-mass planets.Comment: 18 pages, 11 figures, 9 tables. Replaced with version accepted for publication in Ap

    HAT-P-26b: A Low-Density Neptune-Mass Planet Transiting a K Star

    Get PDF
    We report the discovery of HAT-P-26b, a transiting extrasolar planet orbiting the moderately bright V=11.744 K1 dwarf star GSC 0320-01027, with a period P = 4.234516 +- 0.000015 d, transit epoch Tc = 2455304.65122 +- 0.00035 (BJD), and transit duration 0.1023 +- 0.0010 d. The host star has a mass of 0.82 +- 0.03 Msun, radius of 0.79 + 0.10 - 0.04 Rsun, effective temperature 5079 +- 88 K, and metallicity [Fe/H] = -0.04 +- 0.08. The planetary companion has a mass of 0.059 +- 0.007 MJ, and radius of 0.565 + 0.072 - 0.032 RJ yielding a mean density of 0.40 +- 0.10 g cm-3. HAT-P-26b is the fourth Neptune-mass transiting planet discovered to date. It has a mass that is comparable to those of Neptune and Uranus, and slightly smaller than those of the other transiting Super-Neptunes, but a radius that is ~65% larger than those of Neptune and Uranus, and also larger than those of the other transiting Super-Neptunes. HAT-P-26b is consistent with theoretical models of an irradiated Neptune-mass planet with a 10 Mearth heavy element core that comprises >~ 50% of its mass with the remainder contained in a significant hydrogen-helium envelope, though the exact composition is uncertain as there are significant differences between various theoretical models at the Neptune-mass regime. The equatorial declination of the star makes it easily accessible to both Northern and Southern ground-based facilities for follow-up observations.Comment: 16 pages, 9 figures, 5 tables, submitted to Ap

    HAT-P31bc:A Transiting, Eccentric, Hot Jupiter and a Long-Period, Massive Third Body

    Get PDF
    We report the discovery of HAT-P-31b, a transiting exoplanet orbiting the V = 11.660 dwarf star GSC 2099-00908. HAT-P-31b is the first planet discovered with the Hungarian-made Automated Telescope (HAT) without any follow-up photometry, demonstrating the feasibility of a new mode of operation for the HATNet project. The 2.17 M_J , 1.1 R_J planet has a period of P_b = 5.0054 days and maintains an unusually high eccentricity of e_b = 0.2450 ± 0.0045, determined through Keck, FIbr-fed Échelle Spectrograph, and Subaru high-precision radial velocities (RVs). Detailed modeling of the RVs indicates an additional quadratic residual trend in the data detected to very high confidence. We interpret this trend as a long-period outer companion, HAT-P-31c, of minimum mass 3.4 M_J and period ≥2.8 years. Since current RVs span less than half an orbital period, we are unable to determine the properties of HAT-P-31c to high confidence. However, dynamical simulations of two possible configurations show that orbital stability is to be expected. Further, if HAT-P-31c has non-zero eccentricity, our simulations show that the eccentricity of HAT-P-31b is actively driven by the presence of c, making HAT-P-31 a potentially intriguing dynamical laboratory
    corecore