52 research outputs found
Back propagating action potential and distant-dependent calcium signaling in CA1 pyramidal neurons
On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model
During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer
The turn of the valve: representing with material models
Many scientific models are representations. Building on Goodman and Elgin’s notion of representation-as we analyse what this claim involves by providing a general definition of what makes something a scientific model, and formulating a novel account of how they represent. We call the result the DEKI account of representation, which offers a complex kind of representation involving an interplay of, denotation, exemplification, keying up of properties, and imputation. Throughout we focus on material models, and we illustrate our claims with the Phillips-Newlyn machine. In the conclusion we suggest that, mutatis mutandis, the DEKI account can be carried over to other kinds of models, notably fictional and mathematical models
Soft-bound synaptic plasticity increases storage capacity
Accurate models of synaptic plasticity are essential to understand the adaptive properties of the nervous system and for realistic models of learning and memory. Experiments have shown that synaptic plasticity depends not only on pre- and post-synaptic activity patterns, but also on the strength of the connection itself. Namely, weaker synapses are more easily strengthened than already strong ones. This so called soft-bound plasticity automatically constrains the synaptic strengths. It is known that this has important consequences for the dynamics of plasticity and the synaptic weight distribution, but its impact on information storage is unknown. In this modeling study we introduce an information theoretic framework to analyse memory storage in an online learning setting. We show that soft-bound plasticity increases a variety of performance criteria by about 18% over hard-bound plasticity, and likely maximizes the storage capacity of synapses
A unified resource and configurable model of the synapse proteome and its role in disease
Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein–protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use
Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity
Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli
Viewing Rate-Based Neurons as Biophysical Conductance Outputting Models
In the field of computational neuroscience, spiking neural network models are generally preferred over rate-based models due to their ability to model biological dynamics. Within AI, rate-based artificial neural networks have seen success in a wide variety of applications. In simplistic spiking models, information between neurons is transferred through discrete spikes, while rate-based neurons transfer information through continuous firing-rates. Here, we argue that while the spiking neuron model, when viewed in isolation, may be more biophysically accurate than rate-based models, the roles reverse when we also consider information transfer between neurons. In particular we consider the biological importance of continuous synaptic signals. We show how synaptic conductance relates to the common rate-based model, and how this relation elevates these models in terms of their biological soundness. We shall see how this is a logical relation by investigating mechanisms known to be present in biological synapses. We coin the term ‘conductance-outputting neurons’ to differentiate this alternative view from the standard firing-rate perspective. Finally, we discuss how this fresh view of rate-based models can open for further neuro-AI collaboration.acceptedVersionThis is a post-peer-review, pre-copyedit version of an article. Locked until 26.04.2020 due to copyright restrictions. The final authenticated version is available online at: 10.1007/978-3-030-19311-9_1
Optimal learning rules for familiarity detection
It has been suggested that the mammalian memory system has both familiarity and recollection components. Recently, a high-capacity network to store familiarity has been proposed. Here we derive analytically the optimal learning rule for such a familiarity memory using a signalto- noise ratio analysis. We find that in the limit of large networks the covariance rule, known to be the optimal local, linear learning rule for pattern association, is also the optimal learning rule for familiarity discrimination. The capacity is independent of the sparseness of the patterns, as long as the patterns have a fixed number of bits set. The corresponding information capacity is 0.057 bits per synapse, less than typically found for associative networks
Integration of rule-based models and compartmental models of neurons
Synaptic plasticity depends on the interaction between electrical activity in
neurons and the synaptic proteome, the collection of over 1000 proteins in the
post-synaptic density (PSD) of synapses. To construct models of synaptic
plasticity with realistic numbers of proteins, we aim to combine rule-based
models of molecular interactions in the synaptic proteome with compartmental
models of the electrical activity of neurons. Rule-based models allow
interactions between the combinatorially large number of protein complexes in
the postsynaptic proteome to be expressed straightforwardly. Simulations of
rule-based models are stochastic and thus can deal with the small copy numbers
of proteins and complexes in the PSD. Compartmental models of neurons are
expressed as systems of coupled ordinary differential equations and solved
deterministically. We present an algorithm which incorporates stochastic
rule-based models into deterministic compartmental models and demonstrate an
implementation ("KappaNEURON") of this hybrid system using the SpatialKappa and
NEURON simulators.Comment: Presented to the Third International Workshop on Hybrid Systems
Biology Vienna, Austria, July 23-24, 2014 at the International Conference on
Computer-Aided Verification 201
- …
