303 research outputs found
A demonstration of the utility of fractional experimental design for finding optimal genetic algorithm parameter settings
This paper demonstrates that the use of sparse experimental design in the development of the structure for genetic algorithms, and hence other computer programs, is a particularly effective and efficient strategy. Despite widespread knowledge of the existence of these systematic experimental plans, they have seen limited application in the investigation of advanced computer programs. This paper attempts to address this missed opportunity and encourage others to take advantage of the power of these plans. Using data generated from a full factorial experimental design, involving 27 experimental runs that was used to assess the optimum operating settings of the parameters of a special genetic algorithm (GA), we show that similar results could have been obtained using as few as nine runs. The GA was used to find minimum cost schedules for a complex component assembly operation with many sub-processes
Massive migration from the steppe is a source for Indo-European languages in Europe
We generated genome-wide data from 69 Europeans who lived between 8,000-3,000
years ago by enriching ancient DNA libraries for a target set of almost four
hundred thousand polymorphisms. Enrichment of these positions decreases the
sequencing required for genome-wide ancient DNA analysis by a median of around
250-fold, allowing us to study an order of magnitude more individuals than
previous studies and to obtain new insights about the past. We show that the
populations of western and far eastern Europe followed opposite trajectories
between 8,000-5,000 years ago. At the beginning of the Neolithic period in
Europe, ~8,000-7,000 years ago, closely related groups of early farmers
appeared in Germany, Hungary, and Spain, different from indigenous
hunter-gatherers, whereas Russia was inhabited by a distinctive population of
hunter-gatherers with high affinity to a ~24,000 year old Siberian6 . By
~6,000-5,000 years ago, a resurgence of hunter-gatherer ancestry had occurred
throughout much of Europe, but in Russia, the Yamnaya steppe herders of this
time were descended not only from the preceding eastern European
hunter-gatherers, but from a population of Near Eastern ancestry. Western and
Eastern Europe came into contact ~4,500 years ago, as the Late Neolithic Corded
Ware people from Germany traced ~3/4 of their ancestry to the Yamnaya,
documenting a massive migration into the heartland of Europe from its eastern
periphery. This steppe ancestry persisted in all sampled central Europeans
until at least ~3,000 years ago, and is ubiquitous in present-day Europeans.
These results provide support for the theory of a steppe origin of at least
some of the Indo-European languages of Europe
Reward prediction error in the ERP following unconditioned aversive stimuli
Reinforcement learning in humans and other animals is driven by reward prediction errors: deviations between the amount of reward or punishment initially expected and that which is obtained. Temporal difference methods of reinforcement learning generate this reward prediction error at the earliest time at which a revision in reward or punishment likelihood is signalled, for example by a conditioned stimulus. Midbrain dopamine neurons, believed to compute reward prediction errors, generate this signal in response to both conditioned and unconditioned stimuli, as predicted by temporal difference learning. Electroencephalographic recordings of human participants have suggested that a component named the feedback-related negativity (FRN) is generated when this signal is carried to the cortex. If this is so, the FRN should be expected to respond equivalently to conditioned and unconditioned stimuli. However, very few studies have attempted to measure the FRN’s response to unconditioned stimuli. The present study attempted to elicit the FRN in response to a primary aversive stimulus (electric shock) using a design that varied reward prediction error while holding physical intensity constant. The FRN was strongly elicited, but earlier and more transiently than typically seen, suggesting that it may incorporate other processes than the midbrain dopamine system
Implementation of a patient participation strategy in a randomized controlled hand hygiene promotion study – a mixed-method qualitative and quantitative evaluation
The best way to skin a cat: product consumption versus direct observation for monitoring hand hygiene performance
Genomic insights into the origin of farming in the ancient Near East
We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 BC, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia
Genetic variation at hair length candidate genes in elephants and the extinct woolly mammoth
<p>Abstract</p> <p>Background</p> <p>Like humans, the living elephants are unusual among mammals in being sparsely covered with hair. Relative to extant elephants, the extinct woolly mammoth, <it>Mammuthus primigenius</it>, had a dense hair cover and extremely long hair, which likely were adaptations to its subarctic habitat. The fibroblast growth factor 5 (<it>FGF5</it>) gene affects hair length in a diverse set of mammalian species. Mutations in <it>FGF5 </it>lead to recessive long hair phenotypes in mice, dogs, and cats; and the gene has been implicated in hair length variation in rabbits. Thus, <it>FGF5 </it>represents a leading candidate gene for the phenotypic differences in hair length notable between extant elephants and the woolly mammoth. We therefore sequenced the three exons (except for the 3' UTR) and a portion of the promoter of <it>FGF5 </it>from the living elephantid species (Asian, African savanna and African forest elephants) and, using protocols for ancient DNA, from a woolly mammoth.</p> <p>Results</p> <p>Between the extant elephants and the mammoth, two single base substitutions were observed in <it>FGF5</it>, neither of which alters the amino acid sequence. Modeling of the protein structure suggests that the elephantid proteins fold similarly to the human FGF5 protein. Bioinformatics analyses and DNA sequencing of another locus that has been implicated in hair cover in humans, type I hair keratin pseudogene (<it>KRTHAP1</it>), also yielded negative results. Interestingly, <it>KRTHAP1 </it>is a pseudogene in elephantids as in humans (although fully functional in non-human primates).</p> <p>Conclusion</p> <p>The data suggest that the coding sequence of the <it>FGF5 </it>gene is not the critical determinant of hair length differences among elephantids. The results are discussed in the context of hairlessness among mammals and in terms of the potential impact of large body size, subarctic conditions, and an aquatic ancestor on hair cover in the Proboscidea.</p
- …
