390 research outputs found
Aircraft System and Product Development: Teaching the Conceptual Phase
This paper reports the first offering of a graduate level subject covering the conceptual phase of aircraft product development. The output of the conceptual phase is a system level specification that usually serves as the input for a traditional undergraduate capstone subject on aircraft design. Of critical importance in the conceptual phase is addressing the business case for the candidate product. The conceptual phase spans a much wider range of topics than the technical issues which dominate preliminary design. These include user needs, investment and business requirements, market analysis, operational issues, exogenous constraints (certification, regulation, political, etc.), as well as engineering and manufacturing requirements.
Students in the subject were required to Prepare for the Board of Directors of a large aerospace company a compelling business case and specification for a large jet transport product. Three student teams produced original responses to the challenge and have reported their findings in a companion AIAA paper. This paper addresses the pedagogical approaches and outcomes. These encompass the use of distance learning technology and techniques for several off-campus practicing engineering students. Overall, the outcome was very gratifying. The class will be offered in the spring of 2001, focusing on a supersonic business jet
New insights into landslide processes around volcanic islands from Remotely Operated Vehicle (ROV) observations offshore Montserrat
Submarine landslide deposits have been mapped around many volcanic islands, but interpretations of their structure, composition, and emplacement are hindered by the challenges of investigating deposits directly. Here we report on detailed observations of four landslide deposits around Montserrat collected by Remotely Operated Vehicles, integrating direct imagery and sampling with sediment core and geophysical data. These complementary approaches enable a more comprehensive view of large-scale mass-wasting processes around island-arc volcanoes than has been achievable previously. The most recent landslide occurred at 11.5–14 ka (Deposit 1; 1.7 km3) and formed a radially spreading hummocky deposit that is morphologically similar to many subaerial debris-avalanche deposits. Hummocks comprise angular lava and hydrothermally altered fragments, implying a deep-seated, central subaerial collapse, inferred to have removed a major proportion of lavas from an eruptive period that now has little representation in the subaerial volcanic record. A larger landslide (Deposit 2; 10 km3) occurred at ∼130 ka and transported intact fragments of the volcanic edifice, up to 900 m across and over 100 m high. These fragments were rafted within the landslide, and are best exposed near the margins of the deposit. The largest block preserves a primary stratigraphy of subaerial volcanic breccias, of which the lower parts are encased in hemipelagic mud eroded from the seafloor. Landslide deposits south of Montserrat (Deposits 3 and 5) indicate the wide variety of debris-avalanche source lithologies around volcanic islands. Deposit 5 originated on the shallow submerged shelf, rather than the terrestrial volcanic edifice, and is dominated by carbonate debris
INTRA-LIMB JOINT COUPLING PATTERNS DURING THE USE OF THREE LOWER EXTREMITY EXERCISE MACHINES
The purpose of this study was to preliminarily describe sagittal plane joint coupling patterns for a spectrum of common lower extremity exercises. Each participant performed 3, 10 second sessions on a stationary bicycle, elliptical and treadmill. Intra-limb coupling angles of the hip and knee for two recreational athletes were quantified using vector coding techniques on randomly selected cycles from each movement. Variability patterns within the same movements were repeatable within and between each participant while each movement’s distinguishable variability pattern differed both spatially and temporally between pieces of exercise equipment. These findings suggest that each exercise machine studied is distinguishable characteristics in its variability pattern. Comparison of variability patterns might be a useful method in the design of functional training exercises to aid in optimally mimicking task kinematics
Inhomogeneous nucleation in quark hadron phase transition
The effect of subcritical hadron bubbles on a first-order quark-hadron phase
transition is studied. These subcritical hadron bubbles are created due to
thermal fluctuations, and can introduce a finite amount of phase mixing (quark
phase mixed with hadron phase) even at and above the critical temperature. For
reasonable choices of surface tension and correlation length, as obtained from
the lattice QCD calculations, we show that the amount of phase mixing at the
critical temperature remains below the percolation threshold. Thus, as the
system cools below the critical temperature, the transition proceeds through
the nucleation of critical-size hadron bubbles from a metastable quark-gluon
phase (QGP), within an inhomogeneous background populated by an equilibrium
distribution of subcritical hadron bubbles. The inhomogeneity of the medium
results in a substantial reduction of the nucleation barrier for critical
bubbles. Using the corrected nucleation barrier, we estimate the amount of
supercooling for different parameters controlling the phase transition, and
briefly discuss its implications to cosmology and heavy-ion collisions.Comment: LaTeX, 14 pages with 8 Postscript figures. Discussion added in
introduction and conclusion, Fig. 8 added, few more references added,
Typographical errors corrected. Version to appear in Phys. Rev.
Forced Chemical Vapor Infiltration of Tubular Geometries: Modeling, Design, and Scale-Up
In advanced indirectly fired coal combustion systems and externally fired combined cycle concepts, ceramic heat exchangers are required to transfer heat from the hot combustion gases to the clean air that drives the gas turbines. For high efficiencies, the temperature of the turbine inlet needs to exceed 1,100 C and preferably be about 1,260 C. The heat exchangers will operate under pressure and experience thermal and mechanical stresses during heating and cooling, and some transients will be severe under upset conditions. Silicon carbide-matrix composites appear promising for such applications because of their high strength at elevated temperature, light weight, thermal and mechanical shock resistance, damage tolerance, and oxidation and corrosion resistance. The development of thick-walled, tubular ceramic composites has involved investigations of different fiber architectures and fixturing to obtain optimal densification and mechanical properties. The current efforts entail modeling of the densification process in order to increase densification uniformity and decrease processing time. In addition, the process is being scaled to produce components with a 10 cm outer diameter
Recommended from our members
Attention bias to emotional faces varies by IQ and anxiety in Williams syndrome
Individuals with Williams syndrome (WS) often experience significant anxiety. A promising approach to anxiety intervention has emerged from cognitive studies of attention bias to threat. To investigate the utility of this intervention in WS, this study examined attention bias to happy and angry faces in individuals with WS (N=46). Results showed a significant difference in attention bias patterns as a function of IQ and anxiety. Individuals with higher IQ or higher anxiety showed a significant bias toward angry, but not happy faces, whereas individuals with lower IQ or lower anxiety showed the opposite pattern. These results suggest that attention bias interventions to modify a threat bias may be most effectively targeted to anxious individuals with WS with relatively high IQ
Recommended from our members
Oxidation resistant coatings for ceramic matrix composite components
Corrosion resistant Ca{sub 0.6}Mg{sub 0.4}Zr{sub 4}(PO{sub 4}){sub 6} (CMZP) and Ca{sub 0.5}Sr{sub 0.5}Zr{sub 4}(PO{sub 4}){sub 6} (CS-50) coatings for fiber-reinforced SiC-matrix composite heat exchanger tubes have been developed. Aqueous slurries of both oxides were prepared with high solids loading. One coating process consisted of dipping the samples in a slip. A tape casting process has also been created that produced relatively thin and dense coatings covering a large area. A processing technique was developed, utilizing a pre-sintering step, which produced coatings with minimal cracking
Characterization of hydrofracture grouts for radionuclide migration
Detailed characterization of hydrofracture grouts was performed by optical microscopy, scanning electron microscopy, x-ray diffraction, and ..beta..-..gamma.. autoradiography. Laboratory-produced samples containing simulated wastes as well as actual radioactive samples of hydrofracture grout sheets obtained by core drilling were examined in this work. X-ray diffraction results revealed that both laboratory-produced samples and a core-drilled sample consisted primarily of calcium carbonate phases. Both sample types contained very small amounts of strontium or cesium wastes, neither of which could be detected by microscopic techniques. The core-drilled sample contained radioactive /sup 90/Sr, /sup 137/Cs, and /sup 60/Co that could be detected by ..beta..-..gamma.. autoradiography. The autoradiograph revealed that these radionuclides were still present in the 20-year-old grout and that they had not migrated into the trapped shale fragments
- …
