621 research outputs found
In and out of Madagascar : dispersal to peripheral islands, insular speciation and diversification of Indian Ocean daisy trees (Psiadia, Asteraceae)
This study was supported by the European Union’s HOTSPOTS Training Network (MEST-2005-020561)Madagascar is surrounded by archipelagos varying widely in origin, age and structure. Although small and geologically young, these archipelagos have accumulated disproportionate numbers of unique lineages in comparison to Madagascar, highlighting the role of waif-dispersal and rapid in situ diversification processes in generating endemic biodiversity. We reconstruct the evolutionary and biogeographical history of the genus Psiadia (Asteraceae), a plant genus with near equal numbers of species in Madagascar and surrounding islands. Analyzing patterns and processes of diversification, we explain species accumulation on peripheral islands and aim to offer new insights on the origin and potential causes for diversification in the Madagascar and Indian Ocean Islands biodiversity hotspot. Our results provide support for an African origin of the group, with strong support for non-monophyly. Colonization of the Mascarenes took place by two evolutionary distinct lineages from Madagascar, via two independent dispersal events, each unique for their spatial and temporal properties. Significant shifts in diversification rate followed regional expansion, resulting in co-occurring and phenotypically convergent species on high-elevation volcanic slopes. Like other endemic island lineages, Psiadia have been highly successful in dispersing to and radiating on isolated oceanic islands, typified by high habitat diversity and dynamic ecosystems fuelled by continued geological activity. Results stress the important biogeographical role for Rodrigues in serving as an outlying stepping stone from which regional colonization took place. We discuss how isolated volcanic islands contribute to regional diversity by generating substantial numbers of endemic species on short temporal scales. Factors pertaining to the mode and tempo of archipelago formation and its geographical isolation strongly govern evolutionary pathways available for species diversification, and the potential for successful diversification of dispersed lineages, therefore, appears highly dependent on the timing of arrival, as habitat and resource properties change dramatically over the course of oceanic island evolution.Publisher PDFPeer reviewe
Hierarchical Equations of Motion Approach to Quantum Thermodynamics
We present a theoretical framework to investigate quantum thermodynamic
processes under non-Markovian system-bath interactions on the basis of the
hierarchical equations of motion (HEOM) approach, which is convenient to carry
out numerically "exact" calculations. This formalism is valuable because it can
be used to treat not only strong system-bath coupling but also system-bath
correlation or entanglement, which will be essential to characterize the heat
transport between the system and quantum heat baths. Using this formalism, we
demonstrated an importance of the thermodynamic effect from the tri-partite
correlations (TPC) for a two-level heat transfer model and a three-level
autonomous heat engine model under the conditions that the conventional quantum
master equation approaches are failed. Our numerical calculations show that TPC
contributions, which distinguish the heat current from the energy current, have
to be take into account to satisfy the thermodynamic laws.Comment: 9 pages, 4 figures. As a chapter of: F. Binder, L. A. Correa, C.
Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the quantum
regime - Recent Progress and Outlook", (Springer International Publishing
Quantum Fluctuation Theorems
Recent advances in experimental techniques allow one to measure and control
systems at the level of single molecules and atoms. Here gaining information
about fluctuating thermodynamic quantities is crucial for understanding
nonequilibrium thermodynamic behavior of small systems. To achieve this aim,
stochastic thermodynamics offers a theoretical framework, and nonequilibrium
equalities such as Jarzynski equality and fluctuation theorems provide key
information about the fluctuating thermodynamic quantities. We review the
recent progress in quantum fluctuation theorems, including the studies of
Maxwell's demon which plays a crucial role in connecting thermodynamics with
information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and
G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects
and New Directions", (Springer International Publishing, 2018
The “invisible cholecystectomy”: A transumbilical laparoscopic operation without a scar
Background Looking to further reduce the operative trauma of laparoscopic cholecystectomy, we developed, in patients with no history
of cholecystitis and a normal BMI, a scarless operation through the umbilicus. The operative technique, along with the results
of the first 10 patients operated in this way, are fully described.
Methods 10 female patients underwent transumbilical scarless laparoscopic cholecystectomy.
Through the umbilicus, two trocars of 5 mm were introduced parallel to another with a bridge of fascia between them (one for
the 5-mm laparoscope and the other for the grasper). With the help of one 1-mm Kirschner wire, introduced at the subcostal
line and bent with a special designed device, the gallbladder was pulled up and the triangle of Callot was dissected free,
clipped, cut, and the gallbladder was subsequently resected. Finally the gallbladder was taken out through the umbilicus and
the umbilicus reconstructed.
Results 10 female patients, mean age 36 years (range: 31–49), mean body mass index (BMI) 23 (range: 20–26), after one attack (six
patients) or a second attack (four patients) and cholelithiasis confirmed by ultrasonography with no suspicion of inflammation
were included in this preliminary study. Mean operative time was 70 minutes (range: 65–85) with no conversions; hospital stay
was less than 24 hours with no complications.
Conclusion Looking to reduce operative trauma and improve the cosmetic result following laparoscopic cholecystectomy, a transumbilical
operative technique has been developed. Results of the operative procedure in a selected group of patients are encouraging
with no signs of inflammation and normal BMI. The umbilicus can be developed as a natural port for performing various operative
procedures with the help of the traction produced by thin Kirschner wires
Second law, entropy production, and reversibility in thermodynamics of information
We present a pedagogical review of the fundamental concepts in thermodynamics
of information, by focusing on the second law of thermodynamics and the entropy
production. Especially, we discuss the relationship among thermodynamic
reversibility, logical reversibility, and heat emission in the context of the
Landauer principle and clarify that these three concepts are fundamentally
distinct to each other. We also discuss thermodynamics of measurement and
feedback control by Maxwell's demon. We clarify that the demon and the second
law are indeed consistent in the measurement and the feedback processes
individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.),
"Energy Limits in Computation: A Review of Landauer's Principle, Theory and
Experiments
Coupling of acoustic cavitation with DEM-based particle solvers for modeling de-agglomeration of particle clusters in liquid metals
The aerospace and automotive industries are seeking advanced materials with low weight yet high strength and durability. Aluminum and magnesium-based metal matrix composites with ceramic micro- and nano-reinforcements promise the desirable properties. However, larger surface-area-to-volume ratio in micro- and especially nanoparticles gives rise to van der Waals and adhesion forces that cause the particles to agglomerate in clusters. Such clusters lead to adverse effects on final properties, no longer acting as dislocation anchors but instead becoming defects. Also, agglomeration causes the particle distribution to become uneven, leading to inconsistent properties. To break up clusters, ultrasonic processing may be used via an immersed sonotrode, or alternatively via electromagnetic vibration. This paper combines a fundamental study of acoustic cavitation in liquid aluminum with a study of the interaction forces causing particles to agglomerate, as well as mechanisms of cluster breakup. A non-linear acoustic cavitation model utilizing pressure waves produced by an immersed horn is presented, and then applied to cavitation in liquid aluminum. Physical quantities related to fluid flow and quantities specific to the cavitation solver are passed to a discrete element method particles model. The coupled system is then used for a detailed study of clusters’ breakup by cavitation
Predicting where a radiation will occur: Acoustic and molecular surveys reveal overlooked diversity in Indian Ocean Island crickets (Mogoplistinae: Ornebius)
Recent theory suggests that the geographic location of island radiations (local accumulation of species diversity due to cladogenesis) can be predicted based on island area and isolation. Crickets are a suitable group for testing these predictions, as they show both the ability to reach some of the most isolated islands in the world, and to speciate at small spatial scales. Despite substantial song variation between closely related species in many island cricket lineages worldwide, to date this characteristic has not received attention in the western Indian Ocean islands; existing species descriptions are based on morphology alone. Here we use a combination of acoustics and DNA sequencing to survey these islands for Ornebius crickets. We uncover a small but previously unknown radiation in the Mascarenes, constituting a three-fold increase in the Ornebius species diversity of this archipelago (from two to six species). A further new species is detected in the Comoros. Although double archipelago colonisation is the best explanation for species diversity in the Seychelles, in situ cladogenesis is the best explanation for the six species in the Mascarenes and two species of the Comoros. Whether the radiation of Mascarene Ornebius results from intra- or purely inter- island speciation cannot be determined on the basis of the phylogenetic data alone. However, the existence of genetic, song and ecological divergence at the intra-island scale is suggestive of an intra-island speciation scenario in which ecological and mating traits diverge hand-in-hand. Our results suggest that the geographic location of Ornebius radiations is partially but not fully explained by island area and isolation. A notable anomaly is Madagascar, where our surveys are consistent with existing accounts in finding no Ornebius species present. Possible explanations are discussed, invoking ecological differences between species and differences in environmental history between islands. (Résumé d'auteur
Towards quantum thermodynamics in electronic circuits
Electronic circuits operating at sub-kelvin temperatures are attractive candidates for studying classical and quantum thermodynamics: their temperature can be controlled and measured locally with exquisite precision, and they allow experiments with large statistical samples. The availability and rapid development of devices such as quantum dots, single-electron boxes and superconducting qubits only enhance their appeal. But although these systems provide fertile ground for studying heat transport, entropy production and work in the context of quantum mechanics, the field remains in its infancy experimentally. Here, we review some recent experiments on quantum heat transport, fluctuation relations and implementations of Maxwell’s demon, revealing the rich physics yet to be fully probed in these systems.Peer reviewe
Effect of Systemic Hypertension With Versus Without Left Ventricular Hypertrophy on the Progression of Atrial Fibrillation (from the Euro Heart Survey).
Hypertension is a risk factor for both progression of atrial fibrillation (AF) and development of AF-related complications, that is major adverse cardiac and cerebrovascular events (MACCE). It is unknown whether left ventricular hypertrophy (LVH) as a consequence of hypertension is also a risk factor for both these end points. We aimed to assess this in low-risk AF patients, also assessing gender-related differences. We included 799 patients from the Euro Heart Survey with nonvalvular AF and a baseline echocardiogram. Patients with and without hypertension were included. End points after 1 year were occurrence of AF progression, that is paroxysmal AF becoming persistent and/or permanent AF, and MACCE. Echocardiographic LVH was present in 33% of 379 hypertensive patients. AF progression after 1 year occurred in 10.2% of 373 patients with rhythm follow-up. In hypertensive patients with LVH, AF progression occurred more frequently as compared with hypertensive patients without LVH (23.3% vs 8.8%, p = 0.011). In hypertensive AF patients, LVH was the most important multivariably adjusted determinant of AF progression on multivariable logistic regression (odds ratio 4.84, 95% confidence interval 1.70 to 13.78, p = 0.003). This effect was only seen in male patients (27.5% vs 5.8%, p = 0.002), while in female hypertensive patients, no differences were found in AF progression rates regarding the presence or absence of LVH (15.2% vs 15.0%, p = 0.999). No differences were seen in MACCE for hypertensive patients with and without LVH. In conclusion, in men with hypertension, LVH is associated with AF progression. This association seems to be absent in hypertensive women
The reaction coordinate mapping in quantum thermodynamics
We present an overview of the reaction coordinate approach to handling strong
system-reservoir interactions in quantum thermodynamics. This technique is
based on incorporating a collective degree of freedom of the reservoir (the
reaction coordinate) into an enlarged system Hamiltonian (the supersystem),
which is then treated explicitly. The remaining residual reservoir degrees of
freedom are traced out in the usual perturbative manner. The resulting
description accurately accounts for strong system-reservoir coupling and/or
non-Markovian effects over a wide range of parameters, including regimes in
which there is a substantial generation of system-reservoir correlations. We
discuss applications to both discrete stroke and continuously operating heat
engines, as well as perspectives for additional developments. In particular, we
find narrow regimes where strong coupling is not detrimental to the performance
of continuously operating heat engines.Comment: 17 pages, 2 tables, 7 figures. As a chapter of: F. Binder, L. A.
Correa, C. Gogolin, J. Anders, and G. Adesso (eds.), "Thermodynamics in the
quantum regime - Recent Progress and Outlook", (Springer International
Publishing
- …
