1,552 research outputs found
The First Survey of X-ray Flares from Gamma Ray Bursts Observed by Swift: Spectral Properties and Energetics
Observations of gamma ray bursts (GRBs) with Swift produced the initially
surprising result that many bursts have large X-ray flares superimposed on the
underlying afterglow. The flares were sometimes intense, had rapid rise and
decay phases, and occurred late relative to the ``prompt'' phase. Some
remarkable flares are observed with fluence comparable to the prompt GRB
fluence. Many GRBs have several flares, which are sometimes overlapping. Short,
intense, repetitive, and late flaring can be most easily understood within the
context of the standard fireball model with the internal engine that powers the
prompt GRB emission in an active state at late times. However, other models for
flares have been proposed. Flare origin can be investigated by comparing the
flare spectra to that of the afterglow and the initial prompt emission. In this
work, we have analyzed all significant X-ray flares from the first 110 GRBs
observed by Swift. From this sample 33 GRBs were found to have significant
X-ray flares, with 77 flares that were detected above the 3 level. In
addition to temporal analysis presented in a companion paper, a variety of
spectral models have been fit to each flare. In some cases, we find that the
spectral fits favor a Band function model, which is more akin to the prompt
emission than to that of an afterglow. We find that the average fluence of the
flares is 2.4e-7 erg/cm^2/s in the 0.2-10 keV energy band, which is
approximately a factor of ten below the average prompt GRB fluence. These
results, when combined with those presented in the companion paper on temporal
properties of flares, supports the hypothesis that most X-ray flares are
late-time activity of the internal engine that spawned the initial GRB; not an
afterglow related effect.Comment: accepted by ApJ; 39 pages with 14 figures and 7 table
Translation of Anticancer Efficacy From Nonclinical Models to the Clinic
Mouse cancer models have provided critical insights into tumor biology; however, clinical translation of these findings has been challenging. This perspective posits that factors impacting on successful translation start with limitations in capturing human cancer pathophysiology and end with challenges in generating robust translatable preclinical end points. A comprehensive approach that considers clinically relevant mouse models with both an integrated biomarker strategy and a complementary modeling and simulation effort will strengthen the current oncology drug development paradigm
Screw dislocation in zirconium: An ab initio study
Plasticity in zirconium is controlled by 1/3 screw dislocations
gliding in the prism planes of the hexagonal close-packed structure. This
prismatic and not basal glide is observed for a given set of transition metals
like zirconium and is known to be related to the number of valence electrons in
the d band. We use ab initio calculations based on the density functional
theory to study the core structure of screw dislocations in zirconium.
Dislocations are found to dissociate in the prism plane in two partial
dislocations, each with a pure screw character. Ab initio calculations also
show that the dissociation in the basal plane is unstable. We calculate then
the Peierls barrier for a screw dislocation gliding in the prism plane and
obtain a small barrier. The Peierls stress deduced from this barrier is lower
than 21 MPa, which is in agreement with experimental data. The ability of an
empirical potential relying on the embedded atom method (EAM) to model
dislocations in zirconium is also tested against these ab initio calculations
Long Term X-ray Monitoring Of The TeV Binary LS I +61 303 with RXTE
We report on the results of a long term X-ray monitoring campaign of the
galactic binary LS I +61 303 performed by the Rossi X-ray Timing Explorer. This
dataset consists of 1 ks pointings taken every other day between 2007 August 28
until 2008 February 2. The observations covered six full cycles of the 26.496
day binary period and constitute the largest continuous X-ray monitoring
dataset on LS I +61 303 to date with this sensitivity. There is no
statistically strong detection of modulation of flux or photon index with
orbital phase; however, we do find a strong correlation between flux and photon
index, with the spectrum becoming harder at higher fluxes. The dataset contains
three large flaring episodes, the largest of these reaching a flux level of 7.2
(+0.1,-0.2)*10^-11 erg cm^-2 s^-1 in the 3-10 keV band, which is a factor of
three times larger than flux levels typically seen in the system. Analysis of
these flares shows the X-ray emission from LS I +61 303 changing by up to a
factor of six over timescales of several hundred seconds as well as doubling
times as fast as 2 seconds. This is the fastest variability ever observed from
LS I +61 303 at this wavelength and places constraints on the size of the X-ray
emitting region.Comment: 24 pages, 7 figures, 2 tables. Accepted for publication in Ap
Nonequilibrium brittle fracture propagation: Steady state, oscillations and intermittency
A minimal model is constructed for two-dimensional fracture propagation. The
heterogeneous process zone is presumed to suppress stress relaxation rate,
leading to non-quasistatic behavior. Using the Yoffe solution, I construct and
solve a dynamical equation for the tip stress. I discuss a generic tip velocity
response to local stress and find that noise-free propagation is either at
steady state or oscillatory, depending only on one material parameter. Noise
gives rise to intermittency and quasi-periodicity. The theory explains the
velocity oscillations and the complicated behavior seen in polymeric and
amorphous brittle materials. I suggest experimental verifications and new
connections between velocity measurements and material properties.Comment: To appear in Phys. Rev. Lett., 6 pages, self-contained TeX file, 3
postscript figures upon request from author at [email protected] or
[email protected], http://cnls-www.lanl.gov/homepages/rafi/rafindex.htm
Iatrogenic Spinal Cord Injury Resulting From Cervical Spine Surgery.
STUDY DESIGN: Retrospective cohort study of prospectively collected data.
OBJECTIVE: To examine the incidence of iatrogenic spinal cord injury following elective cervical spine surgery.
METHODS: A retrospective multicenter case series study involving 21 high-volume surgical centers from the AOSpine North America Clinical Research Network was conducted. Medical records for 17 625 patients who received cervical spine surgery (levels from C2 to C7) between January 1, 2005, and December 31, 2011, were reviewed to identify occurrence of iatrogenic spinal cord injury.
RESULTS: In total, 3 cases of iatrogenic spinal cord injury following cervical spine surgery were identified. Institutional incidence rates ranged from 0.0% to 0.24%. Of the 3 patients with quadriplegia, one underwent anterior-only surgery with 2-level cervical corpectomy, one underwent anterior surgery with corpectomy in addition to posterior surgery, and one underwent posterior decompression and fusion surgery alone. One patient had complete neurologic recovery, one partially recovered, and one did not recover motor function.
CONCLUSION: Iatrogenic spinal cord injury following cervical spine surgery is a rare and devastating adverse event. No standard protocol exists that can guarantee prevention of this complication, and there is a lack of consensus regarding evaluation and treatment when it does occur. Emergent imaging with magnetic resonance imaging or computed tomography myelography to evaluate for compressive etiology or malpositioned instrumentation and avoidance of hypotension should be performed in cases of intraoperative and postoperative spinal cord injury
The First Survey of X-ray Flares from Gamma Ray Bursts Observed by Swift: Temporal Properties and Morphology
We present the first systematic investigation of the morphological and timing
properties of flares in GRBs observed by Swift/XRT. We consider a large sample
drawn from all GRBs detected by Swift, INTEGRAL and HETE-2 prior to 2006 Jan
31, which had an XRT follow-up and which showed significant flaring. Our sample
of 33 GRBs includes long and short, at low and high redshift, and a total of 69
flares. The strongest flares occur in the early phases, with a clear
anti-correlation between the flare peak intensity and the flare time of
occurrence. Fitting each X-ray flare with a Gaussian model, we find that the
mean ratio of the width and peak time is = 0.13+/-0.10, albeit
with a large scatter. Late flares at times > 2000 seconds have long durations,
Delta t>300 s, and can be very energetic compared to the underlying continuum.
We further investigated if there is a clear link between the number of pulses
detected in the prompt phase by BAT and the number of X-ray flares detected by
XRT, finding no correlation. However, we find that the distribution of
intensity ratios between successive BAT prompt pulses and that between
successive XRT flares is the same, an indication of a common origin for
gamma-ray pulses and X-ray flares. All evidence indicates that flares are
indeed related to the workings of the central engine and, within the standard
fireball scenario, originate from internal shocks rather than external shocks.
While all flares can be explained by long-lasting engine activity, 29/69 flares
may also be explained by refreshed shocks. However, 10 can only be explained by
prolonged activity of the central engine.Comment: submitted to Ap
Epidural Hematoma Following Cervical Spine Surgery.
STUDY DESIGN: A multicentered retrospective case series.
OBJECTIVE: To determine the incidence and circumstances surrounding the development of a symptomatic postoperative epidural hematoma in the cervical spine.
METHODS: Patients who underwent cervical spine surgery between January 1, 2005, and December 31, 2011, at 23 institutions were reviewed, and all patients who developed an epidural hematoma were identified.
RESULTS: A total of 16 582 cervical spine surgeries were identified, and 15 patients developed a postoperative epidural hematoma, for a total incidence of 0.090%. Substantial variation between institutions was noted, with 11 sites reporting no epidural hematomas, and 1 site reporting an incidence of 0.76%. All patients initially presented with a neurologic deficit. Nine patients had complete resolution of the neurologic deficit after hematoma evacuation; however 2 of the 3 patients (66%) who had a delay in the diagnosis of the epidural hematoma had residual neurologic deficits compared to only 4 of the 12 patients (33%) who had no delay in the diagnosis or treatment (P = .53). Additionally, the patients who experienced a postoperative epidural hematoma did not experience any significant improvement in health-related quality-of-life metrics as a result of the index procedure at final follow-up evaluation.
CONCLUSION: This is the largest series to date to analyze the incidence of an epidural hematoma following cervical spine surgery, and this study suggest that an epidural hematoma occurs in approximately 1 out of 1000 cervical spine surgeries. Prompt diagnosis and treatment may improve the chance of making a complete neurologic recovery, but patients who develop this complication do not show improvements in the health-related quality-of-life measurements
Looking Into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows
We report on a complete set of early optical afterglows of gamma-ray bursts
(GRBs) obtained with the ROTSE-III telescope network from March 2005 through
June 2007. This set is comprised of 12 afterglows with early optical and
Swift/XRT observations, with a median ROTSE-III response time of 45 s after the
start of gamma-ray emission (8 s after the GCN notice time). These afterglows
span four orders of magnitude in optical luminosity, and the contemporaneous
X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray
flares, the broadband synchrotron spectra show that the optical and X-ray
emission originate in a common region, consistent with predictions of the
external forward shock in the fireball model. However, the fireball model is
inadequate to predict the temporal decay indices of the early afterglows, even
after accounting for possible long-duration continuous energy injection. We
find that the optical afterglow is a clean tracer of the forward shock, and we
use the peak time of the forward shock to estimate the initial bulk Lorentz
factor of the GRB outflow, and find 100<Gamma_0<1000, consistent with
expectations.Comment: 31 pages, 5 figures, submitted to Ap
- …
