655 research outputs found
Quantifying methane and nitrous oxide emissions from the UK and Ireland using a national-scale monitoring network
The UK is one of several countries around the world that has enacted legislation to reduce its greenhouse gas emissions. In this study, we present top-down emissions of methane (CH4) and nitrous oxide (N2O) for the UK and Ireland over the period August 2012 to August 2014. These emissions were inferred using measurements from a network of four sites around the two countries. We used a hierarchical Bayesian inverse framework to infer fluxes as well as a set of covariance parameters that describe uncertainties in the system. We inferred average UK total emissions of 2.09 (1.65–2.67) Tg yr−1 CH4 and 0.101 (0.068–0.150) Tg yr−1 N2O and found our derived UK estimates to be generally lower than the a priori emissions, which consisted primarily of anthropogenic sources and with a smaller contribution from natural sources. We used sectoral distributions from the UK National Atmospheric Emissions Inventory (NAEI) to determine whether these discrepancies can be attributed to specific source sectors. Because of the distinct distributions of the two dominant CH4 emissions sectors in the UK, agriculture and waste, we found that the inventory may be overestimated in agricultural CH4 emissions. We found that annual mean N2O emissions were consistent with both the prior and the anthropogenic inventory but we derived a significant seasonal cycle in emissions. This seasonality is likely due to seasonality in fertilizer application and in environmental drivers such as temperature and rainfall, which are not reflected in the annual resolution inventory. Through the hierarchical Bayesian inverse framework, we quantified uncertainty covariance parameters and emphasized their importance for high-resolution emissions estimation. We inferred average model errors of approximately 20 and 0.4 ppb and correlation timescales of 1.0 (0.72–1.43) and 2.6 (1.9–20 3.9) days for CH4 and N2O, respectively. These errors are a combination of transport model errors as well as errors due to unresolved emissions processes in the inventory. We found the largest CH4 errors at the Tacolneston station in eastern England, which may be due to sporadic emissions from landfills and offshore gas in the North Sea
Tracer Measurements in Growing Sea Ice Support Convective Gravity Drainage Parameterizations
Gravity drainage is the dominant process redistributing solutes in growing sea ice. Modeling gravity drainage is therefore necessary to predict physical and biogeochemical variables in sea ice. We evaluate seven gravity drainage parameterizations, spanning the range of approaches in the literature, using tracer measurements in a sea ice growth experiment. Artificial sea ice is grown to around 17 cm thickness in a new experimental facility, the Roland von Glasow air‐sea‐ice chamber. We use NaCl (present in the water initially) and rhodamine (injected into the water after 10 cm of sea ice growth) as independent tracers of brine dynamics. We measure vertical profiles of bulk salinity in situ, as well as bulk salinity and rhodamine in discrete samples taken at the end of the experiment. Convective parameterizations that diagnose gravity drainage using Rayleigh numbers outperform a simpler convective parameterization and diffusive parameterizations when compared to observations. This study is the first to numerically model solutes decoupled from salinity using convective gravity drainage parameterizations. Our results show that (1) convective, Rayleigh number‐based parameterizations are our most accurate and precise tool for predicting sea ice bulk salinity; and (2) these parameterizations can be generalized to brine dynamics parameterizations, and hence can predict the dynamics of any solute in growing sea ic
Intracranial pressure monitoring in normal dogs using subdural and intraparenchymal miniature strain-gauge transducers.
BackgroundMonitoring of intracranial pressure (ICP) is a critical component in the management of intracranial hypertension. Safety, efficacy, and optimal location of microsensor devices have not been defined in dogs.Hypothesis/objectiveAssessment of ICP using a microsensor transducer is feasible in anesthetized and conscious animals and is independent of transducer location. Intraparenchymal transducer placement is associated with more adverse effects.AnimalsSeven adult, bred-for-research dogs.MethodsIn a prospective investigational study, microsensor ICP transducers were inserted into subdural and intraparenchymal locations at defined rostral or caudal locations within the rostrotentorial compartment under general anesthesia. Mean arterial pressure and ICP were measured continuously during physiological maneuvers, and for 20 hours after anesthesia.ResultsBaseline mean ± SD values for ICP and cerebral perfusion pressure were 7.2 ± 2.3 and 78.9 ± 7.6 mm Hg, respectively. Catheter position did not have a significant effect on ICP measurements. There was significant variation from baseline ICP accompanying physiological maneuvers (P < .001) and with normal activities, especially with changes in head position (P < .001). Pathological sequelae were more evident after intraparenchymal versus subdural placement.Conclusions and clinical importanceUse of a microsensor ICP transducer was technically straightforward and provided ICP measurements within previously reported reference ranges. Results support the use of an accessible dorsal location and subdural positioning. Transient fluctuations in ICP are normal events in conscious dogs and large variations associated with head position should be accounted for when evaluating animals with intracranial hypertension
Southern hemispheric halon trends and global halon emissions, 1978–2011
The atmospheric records of four halons, H-1211 (CBrClF2), H-1301 (CBrF3), H-2402 (CBrF2CBrF2) and H-1202 (CBr2F2), measured from air collected at Cape Grim, Tasmania, between 1978 and 2011, are reported. Mixing ratios of H-1211, H-2402 and H-1202 began to decline in the early to mid-2000s, but those of H-1301 continue to increase up to mid-2011. These trends are compared to those reported by NOAA (National Oceanic and Atmospheric Administration) and AGAGE (Advanced Global Atmospheric Experiment). The observations suggest that the contribution of the halons to total tropospheric bromine at Cape Grim has begun to decline from a peak in 2008 of about 8.1 ppt. An extrapolation of halon mixing ratios to 2060, based on reported banks and predicted release factors, shows this decline becoming more rapid in the coming decades, with a contribution to total tropospheric bromine of about 3 ppt in 2060. Top-down global annual emissions of the halons were derived using a two-dimensional atmospheric model. The emissions of all four have decreased since peaking in the late 1980s–mid-1990s, but this decline has slowed recently, particularly for H-1301 and H-2402 which have shown no decrease in emissions over the past five years. The UEA (University of East Anglia) top-down model-derived emissions are compared to those reported using a top-down approach by NOAA and AGAGE and the bottom-up estimates of HTOC (Halons Technical Options Committee). The implications of an alternative set of steady-state atmospheric lifetimes are discussed. Using a lifetime of 14 yr or less for H-1211 to calculate top-down emissions estimates would lead to small, or even negative, estimated banks given reported production data. Finally emissions of H-1202, a product of over-bromination during the production process of H-1211, have continued despite reported production of H-1211 ceasing in 2010. This raises questions as to the source of these H-1202 emissions
A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites
Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted d15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of d15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases
Ozone-depleting substances (ODSs) and related chemicals
The amended and adjusted Montreal Protocol continues to be successful at reducing emissions and atmospheric abundances of most controlled ozone-depleting substances (ODSs).Global Ozone Research and Monitoring Projec
Anderson localisation in steady states of microcavity polaritons
We present an experimental signature of the Anderson localisation of
microcavity polaritons, and provide a systematic study of the dependence on
disorder strength. We reveal a controllable degree of localisation, as
characterised by the inverse-participation ratio, by tuning the positional
disorder of arrays of interacting mesas. This constitutes the realisation of
disorder-induced localisation in a driven-dissipative system. In addition to
being an ideal candidate for investigating localisation in this regime,
microcavity polaritons hold promise for low-power, ultra-small devices and
their localisation could be used as a resource in quantum memory and quantum
information processing.Comment: 7 pages, 3 figure
Changes to the chemical state of the Northern Hemisphere atmosphere during the second half of the twentieth century
The NOx (NO and NO2) and HOx (OH and HO2) budgets of the atmosphere exert a major influence on atmospheric composition, controlling removal of primary pollutants and formation of a wide range of secondary products, including ozone, that can influence human health and climate. However, there remain large uncertainties in the changes to these budgets over recent decades. Due to their short atmospheric lifetimes, NOx and HOx are highly variable in space and time, and so the measurements of these species are of limited value for examining long-term, large-scale changes to their budgets. Here, we take an alternative approach by examining long-term atmospheric trends of alkyl nitrates, the production efficiency of which is dependent on the atmospheric [NO] ∕ [HO2] ratio. We derive long-term trends in the alkyl nitrates from measurements in firn air from the NEEM site, Greenland. Their mixing ratios increased by a factor of 3–5 between the 1970s and 1990s. This was followed by a steep decline to the sampling date of 2008. Moreover, we examine how the trends in the alkyl nitrates compare to similarly derived trends in their parent alkanes (i.e. the alkanes which, when oxidised in the presence of NOx, lead to the formation of the alkyl nitrates). The ratios of the alkyl nitrates to their parent alkanes increased from around 1970 to the late 1990s. This is consistent with large changes to the [NO] ∕ [HO2] ratio in the Northern Hemisphere atmosphere during this period. Alternatively, they could represent changes to concentrations of the hydroxyl radical, OH, or to the transport time of the air masses from source regions to the Arctic
An evaluation of the stimulants and impediments to innovation within PFI/PPP projects
This paper identifies the theoretical stimulants and impediments associated with the implementation of PFI/PPP (Private Finance Initiative/Public Private Partnership) projects. A current defect of this procurement approach is the unintentional constraint upon the innovations incorporated into the development of PFI projects. A critical evaluation of the published literature has been utilized to synthesize a theoretical model. The paper proposes a theoretical model for the identification of potential innovation stimulants and impediments within this type of procurement. This theoretical model is then utilised to evaluate four previously completed PFI projects. These project case-studies have been examined in detail. The evaluation demonstrates how ineffective current procedures are. The application of this model before project letting could eliminate unintentional constraints and stimulate improved innovation within the process. The implementation of the model could improve the successful delivery of innovation within the entire PFI/PPP procurement process
- …
