1,304 research outputs found
Shock Tubes in Rarefied Gas Flow Research
The flow within a shock wave is governed by the relaxation times of the molecular degrees of freedom.
Advances in shock-tube design and instrumentation in recent years have made it possible to resolve all the
relaxation times including the shortest, corresponding to the translational degrees of freedom. The shock
tube thus becomes an important tool for critical experiments in the study of the range of applicability of
the Navier-Stokes equations and similar approximations and of the character of solutions of the Boltzmann
equation. Significant progress has recently been made in the understanding of the most obvious such problem,
the flow within a shock in a monatomic gas. Theory and experiment are now in substantial agreement and
the over-all process of energy exchange is understood. Progress has been made in problems connected with
shock wave reflection from real walls, but a host of others remain to be studied including surface interaction
effects. The extension of this type of shock-tube research to more complicated systems, reacting gases, gas
mixtures, and the like has begun and some progress can be reported. Recent experimental progress is illustrated
by a number of measurements made in the 6- and 17-in. shock tubes at the California Institute of
Technology
Development of a risk assessment framework to predict invasive species establishment for multiple taxonomic groups and vectors of introduction
A thorough assessment of aquatic nonindigenous species’ risk facilitates successful monitoring and prevention activities. However, species- and vector-specific information is often limited and difficult to synthesize across a single risk framework. To address this need, we developed an assessment framework capable of estimating the potential for introduction, establishment, and impact by aquatic nonindigenous species from diverse spatial origins and taxonomic classification, in novel environments. Our model builds on previous approaches, while taking on a new perspective for evaluation across species, vectors and stages to overcome the limitations imposed by single species and single vector assessments. We applied this globally-relevant framework to the Laurentian Great Lakes to determine its ability to evaluate risk across multiple taxa and vectors. This case study included 67 aquatic species, identified as “watchlist species” in NOAA’s Great Lakes Aquatic Nonindigenous Species Information System (GLANSIS). Vectors included shipping, hitchhiking/fouling, unauthorized intentional release, escape from recreational or commercial culture, and natural dispersal. We identified potential invaders from every continent but Africa and Antarctica. Of the 67 species, more than a fifth (21%) had a high potential for introduction and greater than 60% had a moderate potential for introduction. Shipping (72%) was the most common potential vector of introduction, followed by unauthorized intentional release (25%), hitchhiking/fouling (21%), dispersal (19%), stocking/planting/escape from recreational culture (13%), and escape from commercial culture. The ability to assess a variety of aquatic nonindigenous species from an array of potential vectors using a consistent methodology is essential for comparing likelihoods of introduction, establishment, and impact. The straightforward design of this framework will allow its application and modification according to policy priorities by natural resource managers. The ability to use a variety of information sources facilitates completion of assessments despite the paucity of data that often plagues aquatic nonindigenous species management
The Application of Sensors on Guardrails for the Purpose of Real Time Impact Detection
The United States roadway system has deteriorated over time due to its age, increasing delays in completing preventative maintenance, and the lack of timely repairs following damage to the infrastructure. Proper asset management drives the need for generalized methods to integrate new sensing capabilities into existing Intelligent Transportation Systems in a time efficient and cost effective manner. In this thesis, we present a methodology for the deployment of new sensors into an existing ITS system. The proposed methodology employs a three phase approach that incorporates data modeling, spatial analysis in Geographic Information Systems, and cost optimization to provide enhanced decision support when deploying new sensing capabilities within an existing ITS. Additionally, we also demonstrate the usefulness of computing while integrating these new sensors using a guardrail sensor case study and focusing on data modeling. The results of the three phase methodology demonstrate an effective means for planning new sensor deployments by analyzing tradeoffs in equipment selection yielding the minimum cost solution for a given set of requirements. Furthermore, the results of the data models demonstrate necessary considerations that must be made with a systems engineering method. The data models accomplish this while accounting for asset management principles taking a systematic approach and incorporating engineering principles
Interaction of Chemistry, Turbulence, and Shock Waves in Hypervelocity Flow
Significant progress was made in the third year of an interdisciplinary experimental, numerical and theoretical program to extend the state of knowledge
and understanding of the effects of chemical reactions in hypervelocity flows. The program addressed the key problems in aerothermochemistry that arise from.the interaction between the three strongly nonlinear effects:
Compressibility; vorticity; and chemistry. Important new results included:
• New data on transition in hypervelocity carbon dioxide flows
• New method of free-piston shock tunnel operation for lower enthalpy
• Accurate new method for computation of self-similar flows
• New experimental data on flap-induced separation at high enthalpy
• Insight into mechanisms active in reacting shear layers from comparison of experiment and computation
• Extensive new data from Rayleigh scattering diagnostics of supersonic shear layer
• Comparison of new experiments and computation of hypervelocity double-wedge flow yielded important differences
• Further first-principles computations of electron collision cross-sections of CO, N_2 and NO
• Good agreement between EFMO computation and experiment of flow over a cone at high incidence
• Extension of LITA diagnostics to high temperature
Nonlinear deterministic equations in biological evolution
We review models of biological evolution in which the population frequency
changes deterministically with time. If the population is self-replicating,
although the equations for simple prototypes can be linearised, nonlinear
equations arise in many complex situations. For sexual populations, even in the
simplest setting, the equations are necessarily nonlinear due to the mixing of
the parental genetic material. The solutions of such nonlinear equations
display interesting features such as multiple equilibria and phase transitions.
We mainly discuss those models for which an analytical understanding of such
nonlinear equations is available.Comment: Invited review for J. Nonlin. Math. Phy
Ligand-Receptor Interactions
The formation and dissociation of specific noncovalent interactions between a
variety of macromolecules play a crucial role in the function of biological
systems. During the last few years, three main lines of research led to a
dramatic improvement of our understanding of these important phenomena. First,
combination of genetic engineering and X ray cristallography made available a
simultaneous knowledg of the precise structure and affinity of series or
related ligand-receptor systems differing by a few well-defined atoms. Second,
improvement of computer power and simulation techniques allowed extended
exploration of the interaction of realistic macromolecules. Third, simultaneous
development of a variety of techniques based on atomic force microscopy,
hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or
flexible transducers yielded direct experimental information of the behavior of
single ligand receptor bonds. At the same time, investigation of well defined
cellular models raised the interest of biologists to the kinetic and mechanical
properties of cell membrane receptors. The aim of this review is to give a
description of these advances that benefitted from a largely multidisciplinar
approach
Vegetation Type Dominates the Spatial Variability in CH<inf>4</inf> Emissions Across Multiple Arctic Tundra Landscapes
Methane (CH4) emissions from Arctic tundra are an important feedback to global climate. Currently, modelling and predicting CH4 fluxes at broader scales are limited by the challenge of upscaling plot-scale measurements in spatially heterogeneous landscapes, and by uncertainties regarding key controls of CH4 emissions. In this study, CH4 and CO2 fluxes were measured together with a range of environmental variables and detailed vegetation analysis at four sites spanning 300 km latitude from Barrow to Ivotuk (Alaska). We used multiple regression modelling to identify drivers of CH4 flux, and to examine relationships between gross primary productivity (GPP), dissolved organic carbon (DOC) and CH4 fluxes. We found that a highly simplified vegetation classification consisting of just three vegetation types (wet sedge, tussock sedge and other) explained 54% of the variation in CH4 fluxes across the entire transect, performing almost as well as a more complex model including water table, sedge height and soil moisture (explaining 58% of the variation in CH4 fluxes). Substantial CH4 emissions were recorded from tussock sedges in locations even when the water table was lower than 40 cm below the surface, demonstrating the importance of plant-mediated transport. We also found no relationship between instantaneous GPP and CH4 fluxes, suggesting that models should be cautious in assuming a direct relationship between primary production and CH4 emissions. Our findings demonstrate the importance of vegetation as an integrator of processes controlling CH4 emissions in Arctic ecosystems, and provide a simplified framework for upscaling plot scale CH4 flux measurements from Arctic ecosystems
Antiepileptic drugs’ tolerability and safety – a systematic review and meta-analysis of adverse effects in dogs
<p>Various anti-epileptic drugs (AEDs) are used for the management of idiopathic epilepsy (IE) in dogs. Their safety profile is an important consideration for regulatory bodies, owners and prescribing clinicians. However, information on their adverse effects still remains limited with most of it derived from non-blinded non-randomized uncontrolled trials and case reports.</p><p><span>This poster won third place, which was presented at the Veterinary Evidence Today conference, Edinburgh November 1-3, 2016. </span></p><br /> <img src="https://www.veterinaryevidence.org/rcvskmod/icons/oa-icon.jpg" alt="Open Access" /
Plasmodium falciparum metacaspase PfMCA-1 triggers a z-VAD-fmk inhibitable protease to promote cell death.
Activation of proteolytic cell death pathways may circumvent drug resistance in deadly protozoan parasites such as Plasmodium falciparum and Leishmania. To this end, it is important to define the cell death pathway(s) in parasites and thus characterize proteases such as metacaspases (MCA), which have been reported to induce cell death in plants and Leishmania parasites. We, therefore, investigated whether the cell death function of MCA is conserved in different protozoan parasite species such as Plasmodium falciparum and Leishmania major, focusing on the substrate specificity and functional role in cell survival as compared to Saccharomyces cerevisae. Our results show that, similarly to Leishmania, Plasmodium MCA exhibits a calcium-dependent, arginine-specific protease activity and its expression in yeast induced growth inhibition as well as an 82% increase in cell death under oxidative stress, a situation encountered by parasites during the host or when exposed to drugs such as artemisins. Furthermore, we show that MCA cell death pathways in both Plasmodium and Leishmania, involve a z-VAD-fmk inhibitable protease. Our data provide evidence that MCA from both Leishmania and Plasmodium falciparum is able to induce cell death in stress conditions, where it specifically activates a downstream enzyme as part of a cell death pathway. This enzymatic activity is also induced by the antimalarial drug chloroquine in erythrocytic stages of Plasmodium falciparum. Interestingly, we found that blocking parasite cell death influences their drug sensitivity, a result which could be used to create therapeutic strategies that by-pass drug resistance mechanisms by acting directly on the innate pathways of protozoan cell death
- …
