24 research outputs found

    Ability of T1 lipase to degrade amorphous P(3HB): structural and functional study

    Get PDF
    An enzyme with broad substrate specificity would be an asset for industrial application. T1 lipase apparently has the same active site residues as polyhydroxyalkanoates (PHA) depolymerase. Sequences of both enzymes were studied and compared, and a conserved lipase box pentapeptide region around the nucleophilic serine was detected. The alignment of 3-D structures for both enzymes showed their active site residues were well aligned with an RMSD value of 1.981 Å despite their sequence similarity of only 53.8%. Docking of T1 lipase with P(3HB) gave forth high binding energy of 5.4 kcal/mol, with the distance of 4.05 Å between serine hydroxyl (OH) group of TI lipase to the carbonyl carbon of the substrate, similar to the native PhaZ7 Pl . This suggests the possible ability of T1 lipase to bind P(3HB) in its active site. The ability of T1 lipase in degrading amorphous P(3HB) was investigated on 0.2% (w/v) P(3HB) plate. Halo zone was observed around the colony containing the enzyme which confirms that T1 lipase is indeed able to degrade amorphous P(3HB). Results obtained in this study highlight the fact that T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation activity but amorphous P(3HB) degradation activity as well

    Study of Functional and Allosteric Sites in Protein Superfamilies

    No full text
    The interaction of proteins (enzymes) with a variety of low-molecular-weight compounds, as well as protein-protein interactions, is the most important factor in the regulation of their functional properties. To date, research effort has routinely focused on studying ligand binding to the functional sites of proteins (active sites of enzymes), whereas the molecular mechanisms of allosteric regulation, as well as binding to other pockets and cavities in protein structures, remained poorly understood. Recent studies have shown that allostery may be an intrinsic property of virtually all proteins. Novel approaches are needed to systematically analyze the architecture and role of various binding sites and establish the relationship between structure, function, and regulation. Computational biology, bioinformatics, and molecular modeling can be used to search for new regulatory centers, characterize their structural peculiarities, as well as compare different pockets in homologous proteins, study the molecular mechanisms of allostery, and understand the communication between topologically independent binding sites in protein structures. The establishment of an evolutionary relationship between different binding centers within protein superfamilies and the discovery of new functional and allosteric (regulatory) sites using computational approaches can improve our understanding of the structure-function relationship in proteins and provide new opportunities for drug design and enzyme engineering.</jats:p

    CASBench: A Benchmarking Set of Proteins with Annotated Catalytic and Allosteric Sites in Their Structures

    No full text
    In recent years, the phenomenon of allostery has witnessed growing attention driven by a fundamental interest in new ways to regulate the functional properties of proteins, as well as the prospects of using allosteric sites as targets to design novel drugs with lower toxicity due to a higher selectivity of binding and specificity of the mechanism of action. The currently available bioinformatic methods can sometimes correctly detect previously unknown ligand binding sites in protein structures. However, the development of universal and more efficient approaches requires a deeper understanding of the common and distinctive features of the structural organization of both functional (catalytic) and allosteric sites, the evolution of their amino acid sequences in respective protein families, and allosteric communication pathways. The CASBench benchmark set contains 91 entries related to enzymes with both catalytic and allosteric sites within their structures annotated based on the experimental information from the Allosteric Database, Catalytic Site Atlas, and Protein Data Bank. The obtained dataset can be used to benchmark the performance of existing computational approaches and develop/train perspective algorithms to search for new catalytic and regulatory sites, as well as to study the mechanisms of protein regulation on a large collection of allosteric enzymes. Establishing a relationship between the structure, function, and regulation is expected to improve our understanding of the mechanisms of action of enzymes and open up new prospects for discovering new drugs and designing more efficient biocatalysts. The CASBench can be operated offline on a local computer or online using built-in interactive tools at https://biokinet.belozersky.msu.ru/casbench.</jats:p
    corecore