28 research outputs found
Bio-processing of algal bio-refinery: a review on current advances and future perspectives
Microalgae biomass contains various useful bio-active components. Microalgae derived biodiesel has been researched for almost two decades. However, sole biodiesel extraction from microalgae is time-consuming and is not economically feasible due to competitive fossil fuel prices. Microalgae also contains proteins and carbohydrates in abundance. Microalgae are likewise utilized to extract high-value products such as pigments, anti-oxidants and long-chain polyunsaturated fatty acids which are useful in cosmetic, pharmaceutical and nutraceutical industry. These compounds can be extracted simultaneously or sequentially after biodiesel extraction to reduce the total expenditure involved in the process. This approach of bio-refinery is necessary to promote microalgae in the commercial market. Researchers have been keen on utilizing the bio-refinery approach to exploit the valuable components encased by microalgae. Apart from all the beneficial components housed by microalgae, they also help in reducing the anthropogenic CO2 levels of the atmosphere while utilizing saline or wastewater. These benefits enable microalgae as a potential source for bio-refinery approach. Although life-cycle analysis and economic assessment do not favor the use of microalgae biomass feedstock to produce biofuel and co-products with the existing techniques, this review still aims to highlight the beneficial components of microalgae and their importance to humans. In addition, this article also focuses on current and future aspects of improving the feasibility of bio-processing for microalgae bio-refinery
Performance and Characterization Studies of Reduced Graphene Oxides Aqua Nanofluids for a Pool Boiling Surface
Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production
A mathematical modeling of microalgae biomass is an essential step to optimize the biomass and lipid production rate and to reduce the cost of microalgal biodiesel production system. In the present study, kinetic studies were carried out to describe the growth and neutral lipid production of two marine microalgae Chlorella salina and Nannochloropsis oculata under the nitrogen-repleted and -depleted conditions using logistic and Luedeking–Piret equations. This research paper provides the information on mathematically efficient procedure to predict suitable environment condition for biomass and lipid production. The predicted results were compared with experimental data, which showed that this model closely agreed with simulated results. From this investigation, it was found that nitrogen was an essential nutrient for algal growth, which increased under nitrogen-rich condition, whereas during nitrogen-limited condition some loss in growth was observed but with increased lipid content. Since metabolic changes occurred under nitrogen- depleted state, the protein and carbohydrate pathways were shifted to lipid biosynthesis
Role of microalgal metabolites and pigments in induction of apoptosis against chronic diseases: A compendious literature.
International audienc
