184 research outputs found

    Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere

    Get PDF
    Using coherent-state techniques, we prove a sampling theorem for Majorana's (holomorphic) functions on the Riemann sphere and we provide an exact reconstruction formula as a convolution product of NN samples and a given reconstruction kernel (a sinc-type function). We also discuss the effect of over- and under-sampling. Sample points are roots of unity, a fact which allows explicit inversion formulas for resolution and overlapping kernel operators through the theory of Circulant Matrices and Rectangular Fourier Matrices. The case of band-limited functions on the Riemann sphere, with spins up to JJ, is also considered. The connection with the standard Euler angle picture, in terms of spherical harmonics, is established through a discrete Bargmann transform.Comment: 26 latex pages. Final version published in J. Fourier Anal. App

    Proteome turnover in the bloodstream and procyclic forms of <i>Trypanosoma brucei</i> measured by quantitative proteomics

    Get PDF
    Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis.Methods: To establish baseline data on T.brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite.Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates.Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.</p

    Wnt11/Fzd7 signaling compartmentalizes AKAP2/PKA to regulate L-type Ca2+ channel

    Get PDF
    Calcium influx through the voltage-gated L-type calcium channels (LTCC) mediates a wide range of physiological processes from contraction to secretion. Despite extensive research on regulation of LTCC conductance by PKA phosphorylation in response to β-adrenergic stimulation, the science remains incomplete. Here, we show that Wnt11, a non-canonical Wnt ligand, through its G protein-coupled receptor (GPCR) Fzd7 attenuates the LTCC conductance by preventing the proteolytic processing of its C terminus. This is mediated across species by protein kinase A (PKA), which is compartmentalized by A-kinase anchoring proteins (AKAP). Systematic analysis of all AKAP family members revealed AKAP2 anchoring of PKA is central to the Wnt11-dependent regulation of the channel. The identified Wnt11/AKAP2/PKA signalosome is required for heart development, controlling the intercellular electrical coupling in the developing zebrafish heart. Altogether, our data revealed Wnt11/Fzd7 signaling via AKAP2/PKA as a conserved alternative GPCR system regulating Ca(2+) homeostasis

    Three-Dimensional Imaging-Based Web Application for Predicting Tracheal Tube Depth in Preterm Neonates

    Get PDF
    BACKGROUND: Positioning a tracheal tube (TT) to the correct depth in preterm infants is challenging. Currently, there is no reliable single-predictor model for neonates applicable to the whole range of size or age. OBJECTIVE: In this study, we used post-mortem magnetic resonance imaging (PMMRI) of preterm infants to measure tracheal dimensions and to develop a clinical guide for TT positioning. METHODS: We measured tracheal length (TL) and tracheal diameter (TD) in a cohort of normal neonates and foetuses that underwent PMMRI (cause of death unexplained). The distance between the lips and the mid-tracheal point, i.e., the mid-tracheal length (mid-TL), and the TD measurement were obtained. We produced univariate prediction models of mid-TL and TD, using gestational age (GA), foot length (FL), crown-rump length (CRL) and body weight (BW) as potential predictors, as well as multiple prediction models for mid-TL. RESULTS: Tracheal measurements were performed in 117 cases, with a mean GA of 28.8 weeks (range 14-42 weeks). The best linear association was between mid-TL and FL (mid-TL = FL × 0.914 + 1.859; R2 = 0.94), but was improved by multivariate regression models. We developed a prediction tool using only GA and BW (R2 = 0.92), and all four predictors (GA, BW, FL and CRL; R2 = 0.94) which is now available as a web-based application via the Internet. CONCLUSION: Post-mortem imaging data provide estimates of TT insertion depth. Our prediction tool based on age and BW can be used at the bedside and is ready to be tested in clinical practice

    Processing Ordinality and Quantity: The Case of Developmental Dyscalculia

    Get PDF
    In contrast to quantity processing, up to date, the nature of ordinality has received little attention from researchers despite the fact that both quantity and ordinality are embodied in numerical information. Here we ask if there are two separate core systems that lie at the foundations of numerical cognition: (1) the traditionally and well accepted numerical magnitude system but also (2) core system for representing ordinal information. We report two novel experiments of ordinal processing that explored the relation between ordinal and numerical information processing in typically developing adults and adults with developmental dyscalculia (DD). Participants made “ordered” or “non-ordered” judgments about 3 groups of dots (non-symbolic numerical stimuli; in Experiment 1) and 3 numbers (symbolic task: Experiment 2). In contrast to previous findings and arguments about quantity deficit in DD participants, when quantity and ordinality are dissociated (as in the current tasks), DD participants exhibited a normal ratio effect in the non-symbolic ordinal task. They did not show, however, the ordinality effect. Ordinality effect in DD appeared only when area and density were randomized, but only in the descending direction. In the symbolic task, the ordinality effect was modulated by ratio and direction in both groups. These findings suggest that there might be two separate cognitive representations of ordinal and quantity information and that linguistic knowledge may facilitate estimation of ordinal information
    corecore