1,686 research outputs found
Measurement techniques for investigation of heat transfer processes at European Research and Technology Test Facility P8
Scaling near the upper critical dimensionality in the localization theory
The phenomenon of upper critical dimensionality d_c2 has been studied from
the viewpoint of the scaling concepts. The Thouless number g(L) is not the only
essential variable in scale transformations, because there is the second
parameter connected with the off-diagonal disorder. The investigation of the
resulting two-parameter scaling has revealed two scenarios, and the switching
from one to another scenario determines the upper critical dimensionality. The
first scenario corresponds to the conventional one-parameter scaling and is
characterized by the parameter g(L) invariant under scale transformations when
the system is at the critical point. In the second scenario, the Thouless
number g(L) grows at the critical point as L^{d-d_c2}. This leads to violation
of the Wegner relation s=\nu(d-2) between the critical exponents for
conductivity (s) and for localization radius (\nu), which takes the form
s=\nu(d_c2-2). The resulting formulas for g(L) are in agreement with the
symmetry theory suggested previously [JETP 81, 925 (1995)]. A more rigorous
version of Mott's argument concerning localization due topological disorder has
been proposed.Comment: PDF, 7 pages, 6 figure
The Degenerate Parametric Oscillator and Ince's Equation
We construct Green's function for the quantum degenerate parametric
oscillator in terms of standard solutions of Ince's equation in a framework of
a general approach to harmonic oscillators. Exact time-dependent wave functions
and their connections with dynamical invariants and SU(1,1) group are also
discussed.Comment: 10 pages, no figure
Renormalization Group Functions for Two-Dimensional Phase Transitions: To the Problem of Singular Contributions
According to the available publications, the field theoretical
renormalization group (RG) approach in the two-dimensional case gives the
critical exponents that differ from the known exact values. This fact was
attempted to explain by the existence of nonanalytic contributions in the RG
functions. The situation is analysed in this work using a new algorithm for
summing divergent series that makes it possible to analyse dependence of the
results for the critical exponents on the expansion coefficients for RG
functions. It has been shown that the exact values of all the exponents can be
obtained with a reasonable form of the coefficient functions. These functions
have small nonmonotonities or inflections, which are poorly reproduced in
natural interpolations. It is not necessary to assume the existence of singular
contributions in RG functions.Comment: PDF, 11 page
Analytical realization of finite-size scaling for Anderson localization. Does the band of critical states exist for d>2?
An analytical realization is suggested for the finite-size scaling algorithm
based on the consideration of auxiliary quasi-1D systems. Comparison of the
obtained analytical results with the results of numerical calculations
indicates that the Anderson transition point is splitted into the band of
critical states. This conclusion is supported by direct numerical evidence
(Edwards and Thouless, 1972; Last and Thouless, 1974; Schreiber, 1985; 1990).
The possibility of restoring the conventional picture still exists but requires
a radical reinterpretetion of the raw numerical data.Comment: PDF, 11 page
Asymptotic behavior in the scalar field theory
An asymptotic solution of the system of Schwinger-Dyson equations for
four-dimensional Euclidean scalar field theory with interaction
is obtained. For
the two-particle amplitude has the
pathology-free asymptotic behavior at large momenta. For
the amplitude possesses Landau-type singularity.Comment: 16 pages; journal version; references adde
Quantum Electrodynamics at Extremely Small Distances
The asymptotics of the Gell-Mann - Low function in QED can be determined
exactly, \beta(g)= g at g\to\infty, where g=e^2 is the running fine structure
constant. It solves the problem of pure QED at small distances L and gives the
behavior g\sim L^{-2}.Comment: Latex, 6 pages, 1 figure include
The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity
We describe a six-parameter family of the minimum-uncertainty squeezed states
for the harmonic oscillator in nonrelativistic quantum mechanics. They are
derived by the action of corresponding maximal kinematical invariance group on
the standard ground state solution. We show that the product of the variances
attains the required minimum value 1/4 only at the instances that one variance
is a minimum and the other is a maximum, when the squeezing of one of the
variances occurs. The generalized coherent states are explicitly constructed
and their Wigner function is studied. The overlap coefficients between the
squeezed, or generalized harmonic, and the Fock states are explicitly evaluated
in terms of hypergeometric functions. The corresponding photons statistics are
discussed and some applications to quantum optics, cavity quantum
electrodynamics, and superfocusing in channeling scattering are mentioned.
Explicit solutions of the Heisenberg equations for radiation field operators
with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys.,
Special Issue celebrating the 20th anniversary of quantum state engineering
(R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201
- …
