1,692 research outputs found
HEAO 1 measurements of the galactic ridge
The HEAO A2 experiment data was systematically searched for unresolved galactic disc emission. Although there were suggestions of non-uniformities in the emission, the data were consistent with a disc of half-thickness 241 + 22 pc and surface emissivity (2-10 keV) at galactic radius R(kpc) of 2.2 10 to the minus 7th power exp(-R/3.5) erg/sq cm to the (-2)power/s (R 7.8 kpc). giving a luminosity of approximately 4.4 10 to the 37th power erg S to the (-1) power. If the model is extrapolated to radii less than 7.8 kpc, the unresolved disc emission is approximately 1.4 10 to the 38th power erg S to the (-1) power (2-10 keV) i.e., a few percent of the luminosity of the galaxy in resolved sources. the disc emission has a spectrum which is significantly softer than that of the high galactic latitude diffuse X-ray background and it is most probably of discrete source origin
Discovery of the Orbit of the Transient X ray Pulsar SAX J2103.5+4545
Using X-ray data from the Rossi X-Ray Timing Explorer (RXTE), we carried out
pulse timing analysis of the transient X-ray pulsar SAX J2103.5+4545. An
outburst was detected by All Sky Monitor (ASM) October 25 1999 and reached a
peak X-ray brightness of 27 mCrab October 28. Between November 19 and December
27, the RXTE/PCA carried out pointed observations which provided us with pulse
arrival times. These yield an eccentric orbit (e= 0.4 \pm 0.2) with an orbital
period of 12.68 \pm 0.25 days and light travel time across the projected
semimajor axis of 72 \pm 6 sec. The pulse period was measured to be 358.62171
\pm 0.00088 s and the spin-up rate (2.50 \pm 0.15) \times 10^{-13} Hz s^{-1}.
The ASM data for the February to September 1997 outburst in which BeppoSAX
discovered SAX J2103.5+4545 (Hulleman, in't Zand and Heise 1998) are modulated
at time scales close to the orbital period. Folded light curves of the 1997 ASM
data and the 1999 PCA data are similar and show that the intensity increases at
periastron passages.Comment: To appear in The Astrophysical Journal (Letters
The Effect of Fiscal Rules on Public Investment if Budget Deficits Are Politically Motivated
Uncertainty about the future preferences of the government may induce policy makers to run excessive budget deficits. As a solution to this problem, economists have proposed to impose a binding debt rule. In this paper we argue that a binding debt rule does not eliminate the distortions due to strategic behaviour of politicians. Rather, strategic manipulation shifts from public debt to public investment. As an alternative, we examine the effects of a capital borrowing rule which permits the government to run a budget deficit equal to the amount of public investment. We show that this rule effectively eliminates strategic behaviour.fiscal rules and budget deficits and public investment
Anchoring In Action: Manual Estimates Of Slant Are Powerfully Biased Toward Initial Hand Orientation And Are Correlated With Verbal Report
People verbally overestimate hill slant by approximately 15 degrees to 25 degrees, whereas manual estimates (e. g., palm board measures) are thought to be more accurate. The relative accuracy of palm boards has contributed to the widely cited theoretical claim that they tap into an accurate, but unconscious, motor representation of locomotor space. In the current work, 4 replications (total N = 204) carried out by 2 different laboratories tested an alternative anchoring hypothesis that manual action measures give low estimates because they are always initiated from horizontal. The results of all 4 replications indicate that the bias from response anchoring can entirely account for the difference between manual and verbal estimates. Moreover, consistent correlations between manual and verbal estimates given by the same observers support the conclusion that both measures are based on the same visual representation. Concepts from the study of judgment under uncertainty apply even to action measures in information rich environments
Spin Gap of S=1/2 Heisenberg Model on Distorted Diamond Chain
We study the spin gap of the S=1/2 Heisenberg model on the distorted diamond
chain, which is recently proposed to represent magnetic properties of Cu_3 Cl_6
(H_2 O)_2 2H_8 C_4 SO_2. This model is composed of stacked trimers and has
three kinds of exchange interactions J_1, J_2 and J_3. Using the numerical
diagonalization, we obtain a contour map of the spin gap in the J_2/J_1-J_3/J_1
plane. We argue possible values of the exchange constants based on the contour
map and the observed value of the spin gap.Comment: 2 pages, 4 figure
The Influence of Dihedral Angle Error Stability on Beam Deviation for Hollow Retro-Reflectors
Retro-reflectors consist of three reflective optical surfaces, which are oriented to reflect the input beam by 180 . For retro-reflector components, it is common to specify an angular beam deviation tolerance, or rather the deviation from the exact 180 def return direction. Precision-aligned retro-reflectors provide 180 deg beam deviation with tolerances on the order of an arcsecond. It is well known that the performance of the retro-reflector depends on the ability to precisely orient the reflective surfaces at mutually perpendicular angles. Precision assembly is therefore critical to ensure highly accurate beam deviation. The dihedral angle errors, and hence the reflected beam deviation, can be measured for the retro-reflector after fabrication, typically by using interferometric techniques. Yet, what is not commonly reported for a fabricated retro-reflector is the stability of the angular beam deviation. For instance, thermo-mechanical effects of the components will contribute to variations in the return beam direction. While the actual stability is design-specific one can develop a mathematical representation for the expected change in the reflected beam direction as a function of the variation in the dihedral angle errors. Presented here is a mathematical formulation for a hollow retro-reflector's beam deviation as a function of the dihedral angle error stability
Chandra observations of the millisecond X-ray pulsar IGR J00291+5934 in quiescence
In this Paper we report on our analysis of three Chandra observations of the
accretion-powered millisecond X-ray pulsar IGR J00291+5934 obtained during the
late stages of the 2004 outburst. We also report the serendipitous detection of
the source in quiescence by ROSAT during MJD 48830-48839. The detected 0.3-10
keV source count rates varied significantly between the Chandra observations
from (7.2+-1.2)x10^-3, (6.8+-0.9)x10^-3, and (1.4+-0.1)x10^-2 counts per second
for the 1st, 2nd, and 3rd Chandra observation, on MJD 53371.88, 53383.99, and
53407.57, respectively. The count rate for the 3rd observation is 2.0+-0.4
times as high as that of the average of the first two observations. The
unabsorbed 0.5-10 keV source flux for the best-fit power-law model to the
source spectrum was (7.9+-2.5)x10^-14, (7.3+-2.0)x10^-14, and
(1.17+-0.22)x10^-13 erg cm^-2 s^-1 for the 1st, 2nd, and 3rd Chandra
observation, respectively. We find that this source flux is consistent with
that found by ROSAT [~(5.4+-2.4)x10^-14 erg cm^-2 s^-1]. Under the assumption
that the interstellar extinction, N_H, does not vary between the observations,
we find that the blackbody temperature during the 2nd Chandra observation is
significantly higher than that during the 1st and 3rd observation. Furthermore,
the effective temperature of the neutron star derived from fitting an absorbed
blackbody or neutron star atmosphere model to the data is rather high in
comparison with many other neutron star soft X-ray transients in quiescence,
even during the 1st and 3rd observation. If we assume that the source quiescent
luminosity is similar to that measured for two other accretion powered
millisecond pulsars in quiescence, the distance to IGR J00291+5934 is 2.6-3.6
kpc.Comment: 7 pages, 3 Figures, accepted for publication in MNRA
Rossi X-ray Timing Explorer Observations of the X-ray Pulsar EXO 1722-363 - a Candidate Eclipsing Supergiant System
Observations made of the X-ray pulsar EXO 1722-363 using the Proportional
Counter Array and All Sky Monitor on board the Rossi X-ray Timing Explorer
reveal the orbital period of this system to be 9.741 +/- 0.004 d from periodic
changes in the source flux. The detection of eclipses, together with the values
of the pulse and orbital periods, suggest that this source consists of a
neutron star accreting from the stellar wind of an early spectral type
supergiant companion. Pulse timing measurements were also obtained but do not
strongly constrain the system parameters. The X-ray spectra can be well fitted
with a model consisting of a power law with a high energy cutoff and, for some
spectra, a blackbody component with a temperature of approximately 0.85 keV.Comment: Accepted for publication in The Astrophysical Journal. 27 pages
including 10 figure
- …
