3,747 research outputs found
Improving stress coping ability: comparison between the CYP17 genotype Of Ovis Aries and Capra Hircus
The ability of animals to adapt to stress is not only an animal health and welfare concern, but also influences reproduction potential and robustness. An important pathway involved in the stress response is the hypothalamic-pituitary-adrenal axis (HPAA) that results in the release of cortisol from the adrenal gland. In this study the cortisol responses of South African Merinos were measured to assess HPAA responsiveness to stress and relate it to behavioural stress responses to
flock-isolation. The experiment was structured according to a 2×2 statistical design, with CYP17 genotype (WT1/WT1 vs. WT1/WT2) and selection line (H-line vs. L-line) as factors. Selection line criteria was based on divergent selection for (H-line) or against (L-line) maternal multiple rearing ability, where the H-line generally outperformed the L-line in terms of reproduction, animal
welfare and resistance to certain pathogens. The CYP17 genotype is involved in the biosynthesis pathway of cortisol. In the present study the CYP17 genotype showed a significant influence on behavioural stress responses, where three parameters of the flock-isolation test were affected (P<0.05), namely the number of bleats uttered, the urinating frequency and the average distance from a human operator. It is suggested that the CYP17 genotype affects behavioural responses via its effects on cortisol production, and that the SNPs located within the CYP17 genotype may have application in marker-assisted selection of sheep
A review of the genus Euteratocephalus Andrassy, 1958, with a description of E. punctatus n. sp.
An evaluation of the breeding strategies used in the development of the Dorper sheep and the improved Boer goat of South Africa
Robust zero-energy modes in an electronic higher-order topological insulator: the dimerized Kagome lattice
Quantum simulators are an essential tool for understanding complex quantum
materials. Platforms based on ultracold atoms in optical lattices and photonic
devices led the field so far, but electronic quantum simulators are proving to
be equally relevant. Simulating topological states of matter is one of the holy
grails in the field. Here, we experimentally realize a higher-order electronic
topological insulator (HOTI). Specifically, we create a dimerized Kagome
lattice by manipulating carbon-monoxide (CO) molecules on a Cu(111) surface
using a scanning tunneling microscope (STM). We engineer alternating weak and
strong bonds to show that a topological state emerges at the corner of the
non-trivial configuration, while it is absent in the trivial one. Contrarily to
conventional topological insulators (TIs), the topological state has two
dimensions less than the bulk, denoting a HOTI. The corner mode is protected by
a generalized chiral symmetry, which leads to a particular robustness against
perturbations. Our versatile approach to quantum simulation with artificial
lattices holds promises of revealing unexpected quantum phases of matter
\pi N scattering in relativistic baryon chiral perturbation theory revisited
We have analyzed pion-nucleon scattering using the manifestly relativistic
covariant framework of Infrared Regularization up to {\cal O}(q^3) in the
chiral expansion, where q is a generic small momentum. We describe the
low-energy phase shifts with a similar quality as previously achieved with
Heavy Baryon Chiral Perturbation Theory, \sqrt{s}\lesssim1.14 GeV. New values
are provided for the {\cal O}(q^2) and {\cal O}(q^3) low-energy constants,
which are compared with previous determinations. This is also the case for the
scattering lengths and volumes. Finally, we have unitarized the previous
amplitudes and as a result the energy range where data are reproduced increases
significantly.Comment: 26 pages, 5 figures, 5 table
Patch behaviour and predictability properties of modelled finite-amplitude sand ridges on the inner shelf
The long-term evolution of shoreface-connected sand ridges is investigated with a nonlinear spectral model which governs the dynamics of waves, currents, sediment transport and the bed level on the inner shelf. Wave variables are calculated with a shoaling-refraction model instead of using a parameterisation. The spectral model describes the time evolution of amplitudes of known eigenmodes of the linearised system. Bottom pattern formation occurs if the transverse bottom slope of the inner shelf, β, exceeds a critical value &beta;<sub>c</sub>. For fixed model parameters the sensitivity of the properties of modelled sand ridges to changes in the number (<i>N</i>&minus;1) of resolved subharmonics (of the initially fastest growing mode) is investigated. For any <i>N</i> the model shows the growth and subsequent saturation of the height of the sand ridges. The saturation time scale is several thousands of years, which suggests that observed sand ridges have not reached their saturated stage yet. The migration speed of the ridges and the average longshore spacing between successive crests in the saturated state differ from those in the initial state. Analysis of the potential energy balance of the ridges reveals that bed slope-induced sediment transport is crucial for the saturation process. In the transient stage the shoreface-connected ridges occur in patches. The overall characteristics of the bedforms (saturation time, final maximum height, average longshore spacing, migration speed) hardly vary with <i>N</i>. However, individual time series of modal amplitudes and bottom patterns strongly depend on <i>N</i>, thereby implying that the detailed evolution of sand ridges can only be predicted over a limited time interval. Additional experiments show that the critical bed slope &beta;<sub>c</sub> increases with larger offshore angles of wave incidence, larger offshore wave heights and longer wave periods, and that the corresponding maximum height of the ridges decreases whilst the saturation time increases
Chiral effective theory predictions for deuteron form factor ratios at low Q^2
We use chiral effective theory to predict the deuteron form factor ratio
G_C/G_Q as well as ratios of deuteron to nucleon form factors. These ratios are
calculated to next-to-next-to-leading order. At this order the chiral expansion
for the NN isoscalar charge operator (including consistently calculated 1/M
corrections) is a parameter-free prediction of the effective theory. Use of
this operator in conjunction with NLO and NNLO chiral effective theory wave
functions produces results that are consistent with extant experimental data
for Q^2 < 0.35 GeV^2. These wave functions predict a deuteron quadrupole moment
G_Q(Q^2=0)=0.278-0.282 fm^2-with the variation arising from short-distance
contributions to this quantity. The variation is of the same size as the
discrepancy between the theoretical result and the experimental value. This
motivates the renormalization of G_Q via a two-nucleon operator that couples to
quadrupole photons. After that renormalization we obtain a robust prediction
for the shape of G_C/G_Q at Q^2 < 0.3 GeV^2. This allows us to make precise,
model-independent predictions for the values of this ratio that will be
measured at the lower end of the kinematic range explored at BLAST. We also
present results for the ratio G_C/G_M.Comment: 31 pages, 7 figure
Nonempirical Density Functionals Investigated for Jellium: Spin-Polarized Surfaces, Spherical Clusters, and Bulk Linear Response
Earlier tests show that the Tao-Perdew-Staroverov-Scuseria (TPSS)
nonempirical meta-generalized gradient approximation (meta-GGA) for the
exchange-correlation energy yields more accurate surface energies than the
local spin density (LSD) approximation for spin-unpolarized jellium. In this
study, work functions and surface energies of a jellium metal in the presence
of ``internal'' and external magnetic fields are calculated with LSD,
Perdew-Burke-Ernzerhof (PBE) GGA, and TPSS meta-GGA and its predecessor, the
nearly nonempirical Perdew-Kurth-Zupan-Blaha (PKZB) meta-GGA, using
self-consistent LSD orbitals and densities. The results show that: (i) For
normal bulk densities, the surface correlation energy is the same in TPSS as in
PBE, as it should be since TPSS strives to represent a self-correlation
correction to PBE; (ii) Normal surface density profiles can be scaled uniformly
to the low-density or strong-interaction limit, and TPSS provides an estimate
for that limit that is consistent with (but probably more accurate than) other
estimates; (iii) For both normal and low densities, TPSS provides the same
description of surface magnetism as PBE, suggesting that these approximations
may be generally equivalent for magnetism. The energies of jellium spheres with
up to 106 electrons are calculated using density functionals and compared to
those obtained with Diffusion Quantum Monte Carlo data, including our estimate
for the fixed-node correction. Finally we calculate the linear response of bulk
jellium using these density functionals, and find that not only LSD but also
PBE GGA and TPSS meta-GGA yield a linear-response in good agreement with that
of the Quantum Monte Carlo method, for wavevectors of the perturbing external
potential up to twice the Fermi wavevector.Comment: 14 pages, 9 figure
Where are the missing members of the baryon antidecuplet?
We analyze what consequences has the observation of exotic pentaquark baryons
on the location of the non-exotic baryons belonging to the antidecuplet. We
suggest that there must be a new nucleon state at 1650-1690 MeV and a new Sigma
baryon at 1760-1810 MeV.Comment: 5 pages, 1 figure. Missing reference adde
- …
