5,136 research outputs found

    Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments

    Full text link
    Surges often appear as a result of the emergence of magnetized plasma from the solar interior. Traditionally, they are observed in chromospheric lines such as Hα\alpha 6563 \AA and Ca II 8542 \AA. However, whether there is a response to the surge appearance and evolution in the Si IV lines or, in fact, in many other transition region lines has not been studied. In this paper we analyze a simultaneous episode of an Hα\alpha surge and a Si IV burst that occurred on 2016 September 03 in active region AR12585. To that end, we use coordinated observations from the Interface Region Imaging Spectrograph (IRIS) and the Swedish 1-m Solar Telescope (SST). For the first time, we report emission of Si IV within the surge, finding profiles that are brighter and broader than the average. Furthermore, the brightest Si IV patches within the domain of the surge are located mainly near its footpoints. To understand the relation between the surges and the emission in transition region lines like Si IV, we have carried out 2.5D radiative MHD (RMHD) experiments of magnetic flux emergence episodes using the Bifrost code and including the non-equilibrium ionization of silicon. Through spectral synthesis we explain several features of the observations. We show that the presence of Si IV emission patches within the surge, their location near the surge footpoints and various observed spectral features are a natural consequence of the emergence of magnetized plasma from the interior to the atmosphere and the ensuing reconnection processes.Comment: 13 pages, 8 figures. The Astrophysical Journal (Accepted

    Quantifying Spicules

    Full text link
    Understanding the dynamic solar chromosphere is fundamental in solar physics. Spicules are an important feature of the chromosphere, connecting the photosphere to the corona, potentially mediating the transfer of energy and mass. The aim of this work is to study the properties of spicules over different regions of the sun. Our goal is to investigate if there is more than one type of spicules, and how spicules behave in the quiet sun, coronal holes, and active regions. We make use of high-cadence and high-spatial resolution Ca II H observations taken by Hinode/SOT. Making use of a semi-automated detection algorithm, we self-consistently track and measure the properties of 519 spicules over different regions. We find clear evidence of two types of spicules. Type I spicules show a rise and fall and have typical lifetimes of 150-400 s and maximum ascending velocities of 15-40 km/s, while type II spicules have shorter lifetimes of 50-150 s, faster velocities of 30-110 km/s, and are not seen to fall down, but rather fade at around their maximum length. Type II spicules are the most common, seen in quiet sun and coronal holes. Type I spicules are seen mostly in active regions. There are regional differences between quiet sun and coronal hole spicules, likely attributable to the different field configurations. The properties of type II spicules are consistent with published results of Rapid Blueshifted Events (RBEs), supporting the hypothesis that RBEs are their disk counterparts. For type I spicules we find the relations between their properties to be consistent with a magnetoacoustic shock wave driver, and with dynamic fibrils as their disk counterpart. The driver of type II spicules remains unclear from limb observations.Comment: Accepted for publication in ApJ. 17 pages, 9 figure

    Linear response within the projection-based renormalization method: Many-body corrections beyond the random phase approximation

    Full text link
    The explicit evaluation of linear response coefficients for interacting many-particle systems still poses a considerable challenge to theoreticians. In this work we use a novel many-particle renormalization technique, the so-called projector-based renormalization method, to show how such coefficients can systematically be evaluated. To demonstrate the prospects and power of our approach we consider the dynamical wave-vector dependent spin susceptibility of the two-dimensional Hubbard model and also determine the subsequent magnetic phase diagram close to half-filling. We show that the superior treatment of (Coulomb) correlation and fluctuation effects within the projector-based renormalization method significantly improves the standard random phase approximation results.Comment: 17 pages, 7 figures, revised versio

    Beta-blocker therapy is not associated with mortality after intracerebral hemorrhage

    Get PDF
    BackgroundBeta-blocker therapy has been suggested to have neuroprotective properties in the setting of acute stroke; however, the evidence is weak and contradictory. We aimed to examine the effects of pre-admission therapy with beta-blockers (BB) on the mortality following spontaneous intracerebral hemorrhage (ICH). MethodsRetrospective analysis of the Helsinki ICH Study database. ResultsA total of 1013 patients with ICH were included in the analysis. Patients taking BB were significantly older, had a higher premorbid mRS score, had more DNR orders, and more comorbidities as atrial fibrillation, hypertension, diabetes mellitus, ischemic heart disease, and heart failure. After adjustment for age, pre-existing comorbidities, and prior use of antithrombotic and antihypertensive medications, no differences in in-hospital mortality (OR 1.1, 95% CI 0.8-1.7), 12-month mortality (OR 1.3, 95% CI 0.9-1.9), and 3-month mortality (OR 1.2, 95% CI 0.8-1.7) emerged. ConclusionPre-admission use of BB was not associated with mortality after ICH.Peer reviewe

    Solar Flux Emergence Simulations

    Get PDF
    We simulate the rise through the upper convection zone and emergence through the solar surface of initially uniform, untwisted, horizontal magnetic flux with the same entropy as the non-magnetic plasma that is advected into a domain 48 Mm wide from from 20 Mm deep. The magnetic field is advected upward by the diverging upflows and pulled down in the downdrafts, which produces a hierarchy of loop like structures of increasingly smaller scale as the surface is approached. There are significant differences between the behavior of fields of 10 kG and 20 or 40 kG strength at 20 Mm depth. The 10 kG fields have little effect on the convective flows and show little magnetic buoyancy effects, reaching the surface in the typical fluid rise time from 20 Mm depth of 32 hours. 20 and 40 kG fields significantly modify the convective flows, leading to long thin cells of ascending fluid aligned with the magnetic field and their magnetic buoyancy makes them rise to the surface faster than the fluid rise time. The 20 kG field produces a large scale magnetic loop that as it emerges through the surface leads to the formation of a bipolar pore-like structure.Comment: Solar Physics (in press), 12 pages, 13 figur

    Intermittent reconnection and plasmoids in UV bursts in the low solar atmosphere

    Full text link
    Magnetic reconnection is thought to drive a wide variety of dynamic phenomena in the solar atmosphere. Yet the detailed physical mechanisms driving reconnection are difficult to discern in the remote sensing observations that are used to study the solar atmosphere. In this paper we exploit the high-resolution instruments Interface Region Imaging Spectrograph (IRIS) and the new CHROMIS Fabry-Perot instrument at the Swedish 1-m Solar Telescope (SST) to identify the intermittency of magnetic reconnection and its association with the formation of plasmoids in so-called UV bursts in the low solar atmosphere. The Si IV 1403A UV burst spectra from the transition region show evidence of highly broadened line profiles with often non-Gaussian and triangular shapes, in addition to signatures of bidirectional flows. Such profiles had previously been linked, in idealized numerical simulations, to magnetic reconnection driven by the plasmoid instability. Simultaneous CHROMIS images in the chromospheric Ca II K 3934A line now provide compelling evidence for the presence of plasmoids, by revealing highly dynamic and rapidly moving brightenings that are smaller than 0.2 arcsec and that evolve on timescales of order seconds. Our interpretation of the observations is supported by detailed comparisons with synthetic observables from advanced numerical simulations of magnetic reconnection and associated plasmoids in the chromosphere. Our results highlight how subarcsecond imaging spectroscopy sensitive to a wide range of temperatures combined with advanced numerical simulations that are realistic enough to compare with observations can directly reveal the small-scale physical processes that drive the wide range of phenomena in the solar atmosphere.Comment: Accepted for publication in Astrophysical Journal Letters. Movies are available at http://folk.uio.no/rouppe/plasmoids_chromis

    Peierls to superfluid crossover in the one-dimensional, quarter-filled Holstein model

    Full text link
    We use continuous-time quantum Monte Carlo simulations to study retardation effects in the metallic, quarter-filled Holstein model in one dimension. Based on results which include the one- and two-particle spectral functions as well as the optical conductivity, we conclude that with increasing phonon frequency the ground state evolves from one with dominant diagonal order---2k_F charge correlations---to one with dominant off-diagonal fluctuations, namely s-wave pairing correlations. In the parameter range of this crossover, our numerical results support the existence of a spin gap for all phonon frequencies. The crossover can hence be interpreted in terms of preformed pairs corresponding to bipolarons, which are essentially localised in the Peierls phase, and "condense" with increasing phonon frequency to generate dominant pairing correlations.Comment: 11 pages, 5 figure
    corecore