35 research outputs found

    Differential presynaptic inhibition of actions of group II afferents in di- and polysynaptic pathways to feline motoneurones

    No full text
    The aim of this study was to investigate differences in the effects of presynaptic inhibition of transmission from group II muscle afferents to neurones in the dorsal horn and in the intermediate zone and the consequences of these differences for reflex actions of group II afferents upon α-motoneurones. The degree of presynaptic inhibition was estimated from the degree of depression of monosynaptic components of population EPSPs (field potentials) evoked by group II muscle afferents in deeply anaesthetized cats. The decrease in the area of field potentials was considerably larger and longer lasting in the intermediate zone, where they were often obliterated, than in the dorsal horn, where they were reduced to about two-thirds. Presynaptic inhibition of field potentials evoked by other afferents at the same locations was much weaker. Intracellular records from α-motoneurones revealed that short latency EPSPs and IPSPs evoked from group II afferents are considerably reduced by conditioning stimuli that effectively depress intermediate zone field potentials of group II origin. The results of this study lead to the conclusion that strong presynaptic inhibition of transmission to intermediate zone interneurones allows a selective depression of disynaptic actions of group II muscle afferents on α- and γ-motoneurones, mediated by these interneurones, and favours polysynaptic actions of these afferents

    Depression of muscle and cutaneous afferent-evoked monosynaptic field potentials during fictive locomotion in the cat

    No full text
    Monosynaptic extracellular field potentials evoked by electrical stimulation of ipsilateral hindlimb nerves carrying muscle group I, II and cutaneous afferents were examined during fictive locomotion. Fifty-eight field potentials were recorded in the dorsal and intermediate laminae throughout the mid-lumbar to first sacral segments and fictive locomotion was evoked by mesencephalic locomotor region (MLR) stimulation in paralysed decerebrate cats.The majority (96 %) of group I, II and cutaneous-evoked field potentials were decreased during fictive locomotion. Group I, cutaneous and dorsal group II potentials were reduced on average to about 80 % of control values. Group II field potentials recorded in the intermediate laminae were reduced to a mean of 49 % of control values. Cyclic variations in field potential amplitude between the flexion and extension phases were observed in 24 of 45 cases analysed. Of those 24 field potentials, the two group I and four cutaneous field potentials were smaller during the flexion phase. All eleven group II and the remaining seven cutaneous fields were smaller during extension. In all but two cases, these cyclic variations were smaller than the tonic depression upon which they were superimposed.In 7/9 group II field potentials examined, reductions (on average to 85 % of control) began with the onset of MLR stimulation that produced tonic activity in the motor nerves before the onset of rhythmic alternating, locomotor discharges. In six of the seven cases the field potential depression increased with the establishment of fictive locomotion. This observation and the cyclic modulation of field potentials during fictive locomotion suggests that the depression was strongly linked to the operation of the spinal locomotor circuitry.Depression of the monosynaptic components of the field potentials suggests a reduction in synaptic transmission from primary afferents to first-order spinal interneurones during fictive locomotion. Accordingly, the larger depression of intermediate group II field potentials may indicate a preferential reduction in transmission from group II afferents to interneurones located in intermediate spinal laminae.Flexion reflexes evoked by group II and cutaneous afferents were also depressed during MLR-evoked fictive locomotion. The possibility that this depression results from a reduction in transmission from primary afferents, and in particular from group II afferents, ending on interneurones in the intermediate laminae is discussed
    corecore