27 research outputs found
Lateral dampers for thrust bearings
The development of lateral damping schemes for thrust bearings was examined, ranking their applicability to various engine classes, selecting the best concept for each engine class and performing an in-depth evaluation. Five major engine classes were considered: large transport, military, small general aviation, turboshaft, and non-manrated. Damper concepts developed for evaluation were: curved beam, constrained and unconstrained elastomer, hybrid boost bearing, hydraulic thrust piston, conical squeeze film, and rolling element thrust face
Event-triggered robot self-assessment to aid in autonomy adjustment
Introduction: Human–robot teams are being called upon to accomplish increasingly complex tasks. During execution, the robot may operate at different levels of autonomy (LOAs), ranging from full robotic autonomy to full human control. For any number of reasons, such as changes in the robot’s surroundings due to the complexities of operating in dynamic and uncertain environments, degradation and damage to the robot platform, or changes in tasking, adjusting the LOA during operations may be necessary to achieve desired mission outcomes. Thus, a critical challenge is understanding when and how the autonomy should be adjusted. Methods: We frame this problem with respect to the robot’s capabilities and limitations, known as robot competency. With this framing, a robot could be granted a level of autonomy in line with its ability to operate with a high degree of competence. First, we propose a Model Quality Assessment metric, which indicates how (un)expected an autonomous robot’s observations are compared to its model predictions. Next, we present an Event-Triggered Generalized Outcome Assessment (ET-GOA) algorithm that uses changes in the Model Quality Assessment above a threshold to selectively execute and report a high-level assessment of the robot’s competency. We validated the Model Quality Assessment metric and the ET-GOA algorithm in both simulated and live robot navigation scenarios. Results: Our experiments found that the Model Quality Assessment was able to respond to unexpected observations. Additionally, our validation of the full ET-GOA algorithm explored how the computational cost and accuracy of the algorithm was impacted across several Model Quality triggering thresholds and with differing amounts of state perturbations. Discussion: Our experimental results combined with a human-in-the-loop demonstration show that Event-Triggered Generalized Outcome Assessment algorithm can facilitate informed autonomy-adjustment decisions based on a robot’s task competency
Graphical Perception of Continuous Quantitative Maps: the Effects of Spatial Frequency and Colormap Design
Continuous 'pseudocolor' maps visualize how a quantitative attribute varies smoothly over space. These maps are widely used by experts and lay citizens alike for communicating scientific and geographical data. A critical challenge for designers of these maps is selecting a color scheme that is both effective and aesthetically pleasing. Although there exist empirically grounded guidelines for color choice in segmented maps (e.g., choropleths), continuous maps are significantly understudied, and their color-coding guidelines are largely based on expert opinion and design heuristics--many of these guidelines have yet to be verified experimentally. We conducted a series of crowdsourced experiments to investigate how the perception of continuous maps is affected by colormap characteristics and spatial frequency (a measure of data complexity). We find that spatial frequency significantly impacts the effectiveness of color encodes, but the precise effect is task-dependent. While rainbow schemes afforded the highest accuracy in quantity estimation irrespective of spatial complexity, divergent colormaps significantly outperformed other schemes in tasks requiring the perception of high-frequency patterns. We interpret these results in relation to current practices and devise new and more granular guidelines for color mapping in continuous maps
Everybody Needs Somebody Sometimes: Validation of Adaptive Recovery in Robotic Space Operations
This work assesses an adaptive approach to fault
recovery in autonomous robotic space operations, which uses indicators of opportunity, such as physiological state measurements
and observations of past human assistant performance, to inform
future selections. We validated our reinforcement learning approach using data we collected from humans executing simulated
mission scenarios. We present a method of structuring humanfactors experiments that permits collection of relevant indicator
of opportunity and assigned assistance task performance data, as
well as evaluation of our adaptive approach, without requiring
large numbers of test subjects. Application of our reinforcement
learning algorithm to our experimental data shows that our adaptive assistant selection approach can achieve lower cumulative
regret compared to existing non-adaptive baseline approaches
when using real human data. Our work has applications beyond
space robotics to any application where autonomy failures may
occur that require external intervention
Failure is Not an Option: Policy Learning for Adaptive Recovery in Space Operations
This letter considers the problem of how robots in long-term space operations can learn to choose appropriate sources of assistance to recover from failures. Current assistant selection methods for failure handling are based on manually specified static lookup tables or policies, which are not responsive to dynamic environments or uncertainty in human performance. We describe a novel and highly flexible learning-based assistant selection framework that uses contextual multiarm bandit algorithms. The contextual bandits exploit information from observed environment and assistant performance variables to efficiently learn selection policies under a wide set of uncertain operating conditions and unknown/dynamically constrained assistant capabilities. Proof of concept simulations of long-term human-robot interactions for space exploration are used to compare the performance of the contextual bandit against other state-of-the-art assistant selection approaches. The contextual bandit outperforms conventional static policies and noncontextual learning approaches, and also demonstrates favorable robustness and scaling properties
A novel integration of online and flipped classroom instructional models in public health higher education
Towards emotion recognition for virtual environments: an evaluation of eeg features on benchmark dataset
One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the user’s emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russell’s Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the and waves and High Order Crossing of the EEG signal
