3,879 research outputs found

    Herd behaviour in Southeast Asian stock markets — An empirical investigation

    Get PDF
    This study examines herd behaviour in four Southeast Asian stock markets, namely Indonesia, the Philippines, Malaysia, and Vietnam. Empirical results indicate that except for the Philippines, herding exists in the other three markets. Stronger evidence of herding has been detected in these markets when the market is up. When the market is down, it is only the Malaysian market that exhibits significant herding. The study further investigates herding by dividing the entire sample period into two sub-periods: pre-crisis and during economic crisis. We find strong evidence of the existence of herding in Indonesia and Malaysia in both sub-periods. However, the findings are mixed when we additionally examine herding in up and down market scenarios during the two sub-periods by using modified models

    Chromosome Organization in Meiosis

    Get PDF
    Our objective is to understand the mechanics of homologous chromosome pairing during meiosis. Aberrant pairing can result in nondisjunction and birth defects in humans. This study used yeast, Saccharomyces cerevisiae, with chromosomally‐integrated arrays of tetO operators that bind TetR repressor proteins fused to GFP to produce a fluorescent signal. In diploid cells, the tetO/TetR‐GFP system allows homologous chromosomes to be identified as two foci (unpaired) or one focus (paired) as they progress through meiosis. We conducted three replicate timecourse experiments, analysing three different stages of meiosis, t=0 hours: pre‐meiotic, t=3 hours: pairing transition, and t=5 hours: synapsis. At each stage, the cells were imaged for 25 minutes, with z‐stacks taken at 30 second intervals. To analyse individual cells, we developed a 4D image analysis pipeline in MATLAB that allowed us to calculate the mean squared change in distance (MSCD), a metric describing the distance between two foci, and analyse deviations from normal diffusive motion

    Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    Get PDF
    International audienceA polar stratospheric ice cloud (PSC type II) was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment

    Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Get PDF
    In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL) are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L<sup>−1</sup> effective ice nuclei (IN) that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics) actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed

    Pathogenicity of an H5N1 avian influenza virus isolated in Vietnam in 2012 and reliability of conjunctival samples for diagnosis of infection

    Get PDF
    The continued spread of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 among poultry in Vietnam poses a potential threat to animals and public health. To evaluate the pathogenicity of a 2012 H5N1 HPAIV isolate and to assess the utility of conjunctival swabs for viral detection and isolation in surveillance, an experimental infection with HPAIV subtype H5N1 was carried out in domestic ducks. Ducks were infected with 10[superscript 7.2] TCID[subscript 50] of A/duck/Vietnam/QB1207/2012 (H5N1), which was isolated from a moribund domestic duck. In the infected ducks, clinical signs of disease, including neurological disorder, were observed. Ducks started to die at 3 days-post-infection (dpi), and the study mortality reached 67%. Viruses were recovered from oropharyngeal and conjunctival swabs until 7 dpi and from cloacal swabs until 4 dpi. In the ducks that died or were sacrificed on 3, 5, or 6 dpi, viruses were recovered from lung, brain, heart, pancreas and intestine, among which the highest virus titers were in the lung, brain or heart. Results of virus titration were confirmed by real-time RT-PCR. Genetic and phylogenetic analysis of the HA gene revealed that the isolate belongs to clade 2.3.2.1 similarly to the H5N1 viruses isolated in Vietnam in 2012. The present study demonstrated that this recent HPAI H5N1 virus of clade 2.3.2.1 could replicate efficiently in the systemic organs, including the brain, and cause severe disease with neurological symptoms in domestic ducks. Therefore, this HPAI H5N1 virus seems to retain the neurotrophic feature and has further developed properties of shedding virus from the oropharynx and conjunctiva in addition to the cloaca, potentially posing a higher risk of virus spread through cross-contact and/or environmental transmission. Continued surveillance and diagnostic programs using conjunctival swabs in the field would further verify the apparent reliability of conjunctival samples for the detection of AIV.Japan Society for the Promotion of Science (Grant-in-Aid for Bilateral Joint Projects)Heiwa Nakajima FoundationNational Institute of Allergy and Infectious Diseases (U.S.) (Contract HHSN2662007000010C

    Identification of nonlinear heat transfer laws from boundary observations

    Get PDF
    We consider the problem of identifying a nonlinear heat transfer law at the boundary, or of the temperature-dependent heat transfer coefficient in a parabolic equation from boundary observations. As a practical example, this model applies to the heat transfer coefficient that describes the intensity of heat exchange between a hot wire and the cooling water in which it is placed. We reformulate the inverse problem as a variational one which aims to minimize a misfit functional and prove that it has a solution. We provide a gradient formula for the misfit functional and then use some iterative methods for solving the variational problem. Thorough investigations are made with respect to several initial guesses and amounts of noise in the input data. Numerical results show that the methods are robust, stable and accurate

    Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.

    Get PDF
    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy

    Modelling Li+ Ion Battery Electrode Properties

    Get PDF
    We formulated two detailed models for an electrolytic cell with particulate electrodes based on a lithium atom concentration dependent Butler-Volmer condition at the interface between electrode particles and the electrolyte. The first was based on a dilute-ion assumption for the electrolyte, while the second assumed that Li ions are present in excess. For the first, we used the method of multiple scales to homogenize this model over the microstructure, formed by the small lithium particles in the electrodes. For the second, we gave rigorous bounds for the effective electrochemical conductivity for a linearized case. We expect similar results and bounds for the "full nonlinear problem" because variational results are generally not adversely affected by a sinh term. Finally we used the asymptotic methods, based on parameters estimated from the literature, to attain a greatly simplified one-dimensional version of the original homogenized model. This simplified model accounts for the fact that diffusion of lithium atoms within individual electrode particles is relatively much faster than that of lithium ions across the whole cell so that lithium ion diffusion is what limits the performance of the battery. However, since most of the potential drop occurs across the Debye layers surrounding each electrode particle, lithium ion diffusion only significantly affects cell performance if there is more or less complete depletion of lithium ions in some region of the electrolyte which causes a break in the current flowing across the cell. This causes catastrophic failure. Providing such failure does not occur the potential drop across the cell is determined by the concentration of lithium atoms in the electrode particles. Within each electrode lithium atom concentration is, to leading order, a function of time only and not of position within the electrode. The depletion of electrode lithium atom concentration is directly proportional to the current being drawn off the cell. This leads one to expect that the potential of the cell gradually drops as current is drawn of it. We would like to emphasize that all the homogenization methods employed in this work give a systematic approach for investigating the effect that changes in the microstructure have on the behaviour of the battery. However, due to lack of time, we have not used this method to investigate particular particle geometries
    corecore