10,083 research outputs found
Space Station: Leadership for the Future
No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space
Charter School Funding: Inequity’s Next Frontier
Of all the controversies swirling around the nation’s charter schools, none is more hotly contested than the debate over funding. Charter opponents charge that] these autonomous public schools are draining scarce resources from public school districts. Proponents, by contrast, complain that charter schools do not get their fair share of public education dollars
Optimal detection of burst events in gravitational wave interferometric observatories
We consider the problem of detecting a burst signal of unknown shape. We
introduce a statistic which generalizes the excess power statistic proposed by
Flanagan and Hughes and extended by Anderson et al. The statistic we propose is
shown to be optimal for arbitrary noise spectral characteristic, under the two
hypotheses that the noise is Gaussian, and that the prior for the signal is
uniform. The statistic derivation is based on the assumption that a signal
affects only affects N samples in the data stream, but that no other
information is a priori available, and that the value of the signal at each
sample can be arbitrary. We show that the proposed statistic can be implemented
combining standard time-series analysis tools which can be efficiently
implemented, and the resulting computational cost is still compatible with an
on-line analysis of interferometric data. We generalize this version of an
excess power statistic to the multiple detector case, also including the effect
of correlated noise. We give full details about the implementation of the
algorithm, both for the single and the multiple detector case, and we discuss
exact and approximate forms, depending on the specific characteristics of the
noise and on the assumed length of the burst event. As a example, we show what
would be the sensitivity of the network of interferometers to a delta-function
burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to
Phys.Rev.D. A Mathematica notebook is available at
http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to
reproduce the numerical results of the pape
From fields to a super-cluster: the role of the environment at z=0.84 with HiZELS
At z=0, clusters are primarily populated by red, elliptical and massive
galaxies, while blue, spiral and lower-mass galaxies are common in low-density
environments. Understanding how and when these differences were established is
of absolute importance for our understanding of galaxy formation and evolution,
but results at high-z remain contradictory. By taking advantage of the widest
and deepest H-alpha narrow-band survey at z=0.84 over the COSMOS and UKIDSS UDS
fields, probing a wide range of densities (from poor fields to rich groups and
clusters, including a confirmed super-cluster with a striking filamentary
structure), we show that the fraction of star-forming galaxies falls
continuously from ~40% in fields to approaching 0% in rich groups/clusters. We
also find that the median SFR increases with environmental density, at least up
to group densities - but only for low and medium mass galaxies, and thus such
enhancement is mass-dependent at z~1. The environment also plays a role in
setting the faint-end slope (alpha) of the H-alpha luminosity function. Our
findings provide a sharper view on galaxy formation and evolution and reconcile
previously contradictory results at z~1: stellar mass is the primary predictor
of star formation activity, but the environment also plays a major role.Comment: 5 pages, 4 figures, to appear in the proceedings of JENAM 2010 S2:
`Environment and the Formation of Galaxies: 30 years later', ASSP, Springe
Binary inspiral, gravitational radiation, and cosmology
Observations of binary inspiral in a single interferometric gravitational
wave detector can be cataloged according to signal-to-noise ratio and
chirp mass . The distribution of events in a catalog composed of
observations with greater than a threshold depends on the
Hubble expansion, deceleration parameter, and cosmological constant, as well as
the distribution of component masses in binary systems and evolutionary
effects. In this paper I find general expressions, valid in any homogeneous and
isotropic cosmological model, for the distribution with and of
cataloged events; I also evaluate these distributions explicitly for relevant
matter-dominated Friedmann-Robertson-Walker models and simple models of the
neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker
cosmological models advanced LIGO detectors will observe binary neutron star
inspiral events with from distances not exceeding approximately
, corresponding to redshifts of (0.26) for
(), at an estimated rate of 1 per week. As the binary system mass
increases so does the distance it can be seen, up to a limit: in a matter
dominated Einstein-deSitter cosmological model with () that limit
is approximately (1.7) for binaries consisting of two
black holes. Cosmological tests based on catalogs of the
kind discussed here depend on the distribution of cataloged events with
and . The distributions found here will play a pivotal role in testing
cosmological models against our own universe and in constructing templates for
the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st
Templates for stellar mass black holes falling into supermassive black holes
The spin modulated gravitational wave signals, which we shall call smirches,
emitted by stellar mass black holes tumbling and inspiralling into massive
black holes have extremely complicated shapes. Tracking these signals with the
aid of pattern matching techniques, such as Wiener filtering, is likely to be
computationally an impossible exercise. In this article we propose using a
mixture of optimal and non-optimal methods to create a search hierarchy to ease
the computational burden. Furthermore, by employing the method of principal
components (also known as singular value decomposition) we explicitly
demonstrate that the effective dimensionality of the search parameter space of
smirches is likely to be just three or four, much smaller than what has
hitherto been thought to be about nine or ten. This result, based on a limited
study of the parameter space, should be confirmed by a more exhaustive study
over the parameter space as well as Monte-Carlo simulations to test the
predictions made in this paper.Comment: 12 pages, 4 Tables, 4th LISA symposium, submitted to CQ
Gravitational Waves from a Compact Star in a Circular, Inspiral Orbit, in the Equatorial Plane of a Massive, Spinning Black Hole, as Observed by LISA
Results are presented from high-precision computations of the orbital
evolution and emitted gravitational waves for a stellar-mass object spiraling
into a massive black hole in a slowly shrinking, circular, equatorial orbit.
The focus of these computations is inspiral near the innermost stable circular
orbit (isco)---more particularly, on orbits for which the angular velocity
Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the
Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of
functions that are of order unity and represent relativistic corrections to
low-orbital-velocity formulas. These tables can form a foundation for future
design studies for the LISA space-based gravitational-wave mission. A first
survey of applications to LISA is presented: Signal to noise ratios S/N are
computed and graphed as functions of the time-evolving gravitational-wave
frequency for representative values of the hole's mass M and spin a and the
inspiraling object's mass \mu, with the distance to Earth chosen to be r_o = 1
Gpc. These S/N's show a very strong dependence on the black-hole spin, as well
as on M and \mu. A comparison with predicted event rates shows strong promise
for detecting these waves, but not beyond about 1Gpc if the inspiraling object
is a white dwarf or neutron star. This argues for a modest lowering of LISA's
noise floor. A brief discussion is given of the prospects for extracting
information from the observed wavesComment: Physical Review D, in press; 21 pages, 9 figures, 10 tables it is
present in the RevTeX fil
Testing Scalar-Tensor Gravity Using Space Gravitational-Wave Interferometers
We calculate the bounds which could be placed on scalar-tensor theories of
gravity of the Jordan, Fierz, Brans and Dicke type by measurements of
gravitational waveforms from neutron stars (NS) spiralling into massive black
holes (MBH) using LISA, the proposed space laser interferometric observatory.
Such observations may yield significantly more stringent bounds on the
Brans-Dicke coupling parameter \omega than are achievable from solar system or
binary pulsar measurements. For NS-MBH inspirals, dipole gravitational
radiation modifies the inspiral and generates an additional contribution to the
phase evolution of the emitted gravitational waveform. Bounds on \omega can
therefore be found by using the technique of matched filtering. We compute the
Fisher information matrix for a waveform accurate to second post-Newtonian
order, including the effect of dipole radiation, filtered using a currently
modeled noise curve for LISA, and determine the bounds on \omega for several
different NS-MBH canonical systems. For example, observations of a 1.4 solar
mass NS inspiralling to a 1000 solar mass MBH with a signal-to-noise ratio of
10 could yield a bound of \omega > 240,000, substantially greater than the
current experimental bound of \omega > 3000.Comment: 18 pages, 4 figures, 1 table; to be submitted to Phys. Rev.
Heterotic Strings in Two Dimensions and New Stringy Phase Transitions
We discuss heterotic string theories in two dimensions with gauge groups
Spin(24) and Spin(8) x E_8. After compactification the theories exhibit a rich
spectrum of states with both winding and momentum. At special points some of
these stringy states become massless, leading to new first order phase
transitions. For example, the thermal theories exhibit standard thermodynamics
below the phase transition, but novel and peculiar behavior above it. In
particular, when the radius of the Euclidean circle is smaller than the phase
transition point the torus partition function is not given by the thermal trace
over the spacetime Hilbert space. The full moduli space of compactified
theories is 13 dimensional, when Wilson lines are included; the Spin(24) and
Spin(8) x E_8 theories correspond to distinct decompactification limits.Comment: 32 pages; v2: references added, minor change
Unstable Nonradial Oscillations on Helium Burning Neutron Stars
Material accreted onto a neutron star can stably burn in steady state only
when the accretion rate is high (typically super-Eddington) or if a large flux
from the neutron star crust permeates the outer atmosphere. For such situations
we have analyzed the stability of nonradial oscillations, finding one unstable
mode for pure helium accretion. This is a shallow surface wave which resides in
the helium atmosphere above the heavier ashes of the ocean. It is excited by
the increase in the nuclear reaction rate during the oscillations, and it grows
on the timescale of a second. For a slowly rotating star, this mode has a
frequency of approximately 20-30 Hz (for l=1), and we calculate the full
spectrum that a rapidly rotating (>>30 Hz) neutron star would support. The
short period X-ray binary 4U 1820--30 is accreting helium rich material and is
the system most likely to show this unstable mode,especially when it is not
exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally
stable atmosphere shows that nonradial perturbations have a different stability
criterion than the spherically symmetric thermal perturbations that generate
type I X-ray bursts.Comment: Accepted for publication in Astrophysical Journal, 22 pages, 14
figure
- …
