10,083 research outputs found

    Space Station: Leadership for the Future

    Get PDF
    No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space

    Charter School Funding: Inequity’s Next Frontier

    Get PDF
    Of all the controversies swirling around the nation’s charter schools, none is more hotly contested than the debate over funding. Charter opponents charge that] these autonomous public schools are draining scarce resources from public school districts. Proponents, by contrast, complain that charter schools do not get their fair share of public education dollars

    Optimal detection of burst events in gravitational wave interferometric observatories

    Get PDF
    We consider the problem of detecting a burst signal of unknown shape. We introduce a statistic which generalizes the excess power statistic proposed by Flanagan and Hughes and extended by Anderson et al. The statistic we propose is shown to be optimal for arbitrary noise spectral characteristic, under the two hypotheses that the noise is Gaussian, and that the prior for the signal is uniform. The statistic derivation is based on the assumption that a signal affects only affects N samples in the data stream, but that no other information is a priori available, and that the value of the signal at each sample can be arbitrary. We show that the proposed statistic can be implemented combining standard time-series analysis tools which can be efficiently implemented, and the resulting computational cost is still compatible with an on-line analysis of interferometric data. We generalize this version of an excess power statistic to the multiple detector case, also including the effect of correlated noise. We give full details about the implementation of the algorithm, both for the single and the multiple detector case, and we discuss exact and approximate forms, depending on the specific characteristics of the noise and on the assumed length of the burst event. As a example, we show what would be the sensitivity of the network of interferometers to a delta-function burst.Comment: 21 pages, 5 figures in 3 groups. Submitted for publication to Phys.Rev.D. A Mathematica notebook is available at http://www.ligo.caltech.edu/~avicere/nda/burst/Burst.nb which allows to reproduce the numerical results of the pape

    From fields to a super-cluster: the role of the environment at z=0.84 with HiZELS

    Full text link
    At z=0, clusters are primarily populated by red, elliptical and massive galaxies, while blue, spiral and lower-mass galaxies are common in low-density environments. Understanding how and when these differences were established is of absolute importance for our understanding of galaxy formation and evolution, but results at high-z remain contradictory. By taking advantage of the widest and deepest H-alpha narrow-band survey at z=0.84 over the COSMOS and UKIDSS UDS fields, probing a wide range of densities (from poor fields to rich groups and clusters, including a confirmed super-cluster with a striking filamentary structure), we show that the fraction of star-forming galaxies falls continuously from ~40% in fields to approaching 0% in rich groups/clusters. We also find that the median SFR increases with environmental density, at least up to group densities - but only for low and medium mass galaxies, and thus such enhancement is mass-dependent at z~1. The environment also plays a role in setting the faint-end slope (alpha) of the H-alpha luminosity function. Our findings provide a sharper view on galaxy formation and evolution and reconcile previously contradictory results at z~1: stellar mass is the primary predictor of star formation activity, but the environment also plays a major role.Comment: 5 pages, 4 figures, to appear in the proceedings of JENAM 2010 S2: `Environment and the Formation of Galaxies: 30 years later', ASSP, Springe

    Binary inspiral, gravitational radiation, and cosmology

    Get PDF
    Observations of binary inspiral in a single interferometric gravitational wave detector can be cataloged according to signal-to-noise ratio ρ\rho and chirp mass M\cal M. The distribution of events in a catalog composed of observations with ρ\rho greater than a threshold ρ0\rho_0 depends on the Hubble expansion, deceleration parameter, and cosmological constant, as well as the distribution of component masses in binary systems and evolutionary effects. In this paper I find general expressions, valid in any homogeneous and isotropic cosmological model, for the distribution with ρ\rho and M\cal M of cataloged events; I also evaluate these distributions explicitly for relevant matter-dominated Friedmann-Robertson-Walker models and simple models of the neutron star mass distribution. In matter dominated Friedmann-Robertson-Walker cosmological models advanced LIGO detectors will observe binary neutron star inspiral events with ρ>8\rho>8 from distances not exceeding approximately 2Gpc2\,\text{Gpc}, corresponding to redshifts of 0.480.48 (0.26) for h=0.8h=0.8 (0.50.5), at an estimated rate of 1 per week. As the binary system mass increases so does the distance it can be seen, up to a limit: in a matter dominated Einstein-deSitter cosmological model with h=0.8h=0.8 (0.50.5) that limit is approximately z=2.7z=2.7 (1.7) for binaries consisting of two 10M10\,\text{M}_\odot black holes. Cosmological tests based on catalogs of the kind discussed here depend on the distribution of cataloged events with ρ\rho and M\cal M. The distributions found here will play a pivotal role in testing cosmological models against our own universe and in constructing templates for the detection of cosmological inspiraling binary neutron stars and black holes.Comment: REVTeX, 38 pages, 9 (encapsulated) postscript figures, uses epsf.st

    Templates for stellar mass black holes falling into supermassive black holes

    Get PDF
    The spin modulated gravitational wave signals, which we shall call smirches, emitted by stellar mass black holes tumbling and inspiralling into massive black holes have extremely complicated shapes. Tracking these signals with the aid of pattern matching techniques, such as Wiener filtering, is likely to be computationally an impossible exercise. In this article we propose using a mixture of optimal and non-optimal methods to create a search hierarchy to ease the computational burden. Furthermore, by employing the method of principal components (also known as singular value decomposition) we explicitly demonstrate that the effective dimensionality of the search parameter space of smirches is likely to be just three or four, much smaller than what has hitherto been thought to be about nine or ten. This result, based on a limited study of the parameter space, should be confirmed by a more exhaustive study over the parameter space as well as Monte-Carlo simulations to test the predictions made in this paper.Comment: 12 pages, 4 Tables, 4th LISA symposium, submitted to CQ

    Gravitational Waves from a Compact Star in a Circular, Inspiral Orbit, in the Equatorial Plane of a Massive, Spinning Black Hole, as Observed by LISA

    Get PDF
    Results are presented from high-precision computations of the orbital evolution and emitted gravitational waves for a stellar-mass object spiraling into a massive black hole in a slowly shrinking, circular, equatorial orbit. The focus of these computations is inspiral near the innermost stable circular orbit (isco)---more particularly, on orbits for which the angular velocity Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of functions that are of order unity and represent relativistic corrections to low-orbital-velocity formulas. These tables can form a foundation for future design studies for the LISA space-based gravitational-wave mission. A first survey of applications to LISA is presented: Signal to noise ratios S/N are computed and graphed as functions of the time-evolving gravitational-wave frequency for representative values of the hole's mass M and spin a and the inspiraling object's mass \mu, with the distance to Earth chosen to be r_o = 1 Gpc. These S/N's show a very strong dependence on the black-hole spin, as well as on M and \mu. A comparison with predicted event rates shows strong promise for detecting these waves, but not beyond about 1Gpc if the inspiraling object is a white dwarf or neutron star. This argues for a modest lowering of LISA's noise floor. A brief discussion is given of the prospects for extracting information from the observed wavesComment: Physical Review D, in press; 21 pages, 9 figures, 10 tables it is present in the RevTeX fil

    Testing Scalar-Tensor Gravity Using Space Gravitational-Wave Interferometers

    Get PDF
    We calculate the bounds which could be placed on scalar-tensor theories of gravity of the Jordan, Fierz, Brans and Dicke type by measurements of gravitational waveforms from neutron stars (NS) spiralling into massive black holes (MBH) using LISA, the proposed space laser interferometric observatory. Such observations may yield significantly more stringent bounds on the Brans-Dicke coupling parameter \omega than are achievable from solar system or binary pulsar measurements. For NS-MBH inspirals, dipole gravitational radiation modifies the inspiral and generates an additional contribution to the phase evolution of the emitted gravitational waveform. Bounds on \omega can therefore be found by using the technique of matched filtering. We compute the Fisher information matrix for a waveform accurate to second post-Newtonian order, including the effect of dipole radiation, filtered using a currently modeled noise curve for LISA, and determine the bounds on \omega for several different NS-MBH canonical systems. For example, observations of a 1.4 solar mass NS inspiralling to a 1000 solar mass MBH with a signal-to-noise ratio of 10 could yield a bound of \omega > 240,000, substantially greater than the current experimental bound of \omega > 3000.Comment: 18 pages, 4 figures, 1 table; to be submitted to Phys. Rev.

    Heterotic Strings in Two Dimensions and New Stringy Phase Transitions

    Full text link
    We discuss heterotic string theories in two dimensions with gauge groups Spin(24) and Spin(8) x E_8. After compactification the theories exhibit a rich spectrum of states with both winding and momentum. At special points some of these stringy states become massless, leading to new first order phase transitions. For example, the thermal theories exhibit standard thermodynamics below the phase transition, but novel and peculiar behavior above it. In particular, when the radius of the Euclidean circle is smaller than the phase transition point the torus partition function is not given by the thermal trace over the spacetime Hilbert space. The full moduli space of compactified theories is 13 dimensional, when Wilson lines are included; the Spin(24) and Spin(8) x E_8 theories correspond to distinct decompactification limits.Comment: 32 pages; v2: references added, minor change

    Unstable Nonradial Oscillations on Helium Burning Neutron Stars

    Full text link
    Material accreted onto a neutron star can stably burn in steady state only when the accretion rate is high (typically super-Eddington) or if a large flux from the neutron star crust permeates the outer atmosphere. For such situations we have analyzed the stability of nonradial oscillations, finding one unstable mode for pure helium accretion. This is a shallow surface wave which resides in the helium atmosphere above the heavier ashes of the ocean. It is excited by the increase in the nuclear reaction rate during the oscillations, and it grows on the timescale of a second. For a slowly rotating star, this mode has a frequency of approximately 20-30 Hz (for l=1), and we calculate the full spectrum that a rapidly rotating (>>30 Hz) neutron star would support. The short period X-ray binary 4U 1820--30 is accreting helium rich material and is the system most likely to show this unstable mode,especially when it is not exhibiting X-ray bursts. Our discovery of an unstable mode in a thermally stable atmosphere shows that nonradial perturbations have a different stability criterion than the spherically symmetric thermal perturbations that generate type I X-ray bursts.Comment: Accepted for publication in Astrophysical Journal, 22 pages, 14 figure
    corecore