31,654 research outputs found
Field Driven Thermostated System : A Non-Linear Multi-Baker Map
In this paper, we discuss a simple model for a field driven, thermostated
random walk that is constructed by a suitable generalization of a multi-baker
map. The map is a usual multi-baker, but perturbed by a thermostated external
field that has many of the properties of the fields used in systems with
Gaussian thermostats. For small values of the driving field, the map is
hyperbolic and has a unique SRB measure that we solve analytically to first
order in the field parameter. We then compute the positive and negative
Lyapunov exponents to second order and discuss their relation to the transport
properties. For higher values of the parameter, this system becomes
non-hyperbolic and posseses an attractive fixed point.Comment: 6 pages + 5 figures, to appear in Phys. Rev.
Hysteresis loops of magnetic thin films with perpendicular anisotropy
We model the magnetization of quasi two-dimensional systems with easy
perpendicular (z-)axis anisotropy upon change of external magnetic field along
z. The model is derived from the Landau-Lifshitz-Gilbert equation for
magnetization evolution, written in closed form in terms of the z component of
the magnetization only. The model includes--in addition to the external
field--magnetic exchange, dipolar interactions and structural disorder. The
phase diagram in the disorder/interaction strength plane is presented, and the
different qualitative regimes are analyzed. The results compare very well with
observed experimental hysteresis loops and spatial magnetization patterns, as
for instance for the case of Co-Pt multilayers.Comment: 8 pages, 8 figure
Detection of spin reversal and nutations through current measurements
The dynamics of a single spin embedded in a the tunnel junction between
ferromagnetic contacts is strongly affected by the exchange coupling to the
tunneling electrons. Moment reversal of the local spin induced by the bias
voltage across the junction is shown to have a measurable effect on the
tunneling current. Furthermore, the frequency of a harmonic bias voltage is
picked up by the local spin dynamics and transferred back to the current
generating a double frequency component.Comment: 5 pages, 5 figures; published version (with minor corrections
Endogenous Versus Exogenous Shocks in Complex Networks: an Empirical Test Using Book Sale Ranking
Are large biological extinctions such as the Cretaceous/Tertiary KT boundary
due to a meteorite, extreme volcanic activity or self-organized critical
extinction cascades? Are commercial successes due to a progressive reputation
cascade or the result of a well orchestrated advertisement? Determining the
chain of causality for extreme events in complex systems requires disentangling
interwoven exogenous and endogenous contributions with either no clear or too
many signatures. Here, we study the precursory and recovery signatures
accompanying shocks, that we test on a unique database of the Amazon sales
ranking of books. We find clear distinguishing signatures classifying two types
of sales peaks. Exogenous peaks occur abruptly and are followed by a power law
relaxation, while endogenous sale peaks occur after a progressively
accelerating power law growth followed by an approximately symmetrical power
law relaxation which is slower than for exogenous peaks. These results are
rationalized quantitatively by a simple model of epidemic propagation of
interactions with long memory within a network of acquaintances. The slow
relaxation of sales implies that the sales dynamics is dominated by cascades
rather than by the direct effects of news or advertisements, indicating that
the social network is close to critical.Comment: 5 pages including 3 figures final version published in Physical
Review Letter
Two Circular-Rotational Eigenmodes in Vortex Gyrotropic Motions in Soft Magnetic Nanodots
We found, by micromagnetic numerical and analytical calculations, that the
clockwise (CW) and counterclockwise (CCW) circular-rotational motions of a
magnetic vortex core in a soft magnetic circular nanodot are the elementary
eigenmodes existing in the gyrotropic motion with respect to the corresponding
CW and CCW circular-rotational-field eigenbasis. Any steady-state vortex
gyrotropic motions driven by a linearly polarized oscillating in-plane magnetic
field in the linear regime can be perfectly understood according to the
superposition of the two circular eigenmodes, which show asymmetric resonance
characteristics reflecting the vortex polarization. The relative magnitudes in
the amplitude and phase between the CCW and CW eigenmodes determine the
elongation and orientation of the orbital trajectories of the vortex core
motions, respectively, which trajectories vary with the polarization and
chirality of the given vortex as well as the field frequency across the
resonance frequency.Comment: 30 pages, 7 figure
Making co-enrolment feasible for randomised controlled trials in paediatric intensive care.
Enrolling children into several trials could increase recruitment and lead to quicker delivery of optimal care in paediatric intensive care units (PICU). We evaluated decisions taken by clinicians and parents in PICU on co-enrolment for two large pragmatic trials: the CATCH trial (CATheters in CHildren) comparing impregnated with standard central venous catheters (CVCs) for reducing bloodstream infection in PICU and the CHIP trial comparing tight versus standard control of hyperglycaemia
The quantum-mechanical basis of an extended Landau-Lifshitz-Gilbert equation for a current-carrying ferromagnetic wire
An extended Landau-Lifshitz-Gilbert (LLG) equation is introduced to describe
the dynamics of inhomogeneous magnetization in a current-carrying wire. The
coefficients of all the terms in this equation are calculated
quantum-mechanically for a simple model which includes impurity scattering.
This is done by comparing the energies and lifetimes of a spin wave calculated
from the LLG equation and from the explicit model. Two terms are of particular
importance since they describe non-adiabatic spin-transfer torque and damping
processes which do not rely on spin-orbit coupling. It is shown that these
terms may have a significant influence on the velocity of a current-driven
domain wall and they become dominant in the case of a narrow wall.Comment: 19 pages, 1 figur
Variations in solar wind fractionation as seen by ACE/SWICS over a solar cycle and the implications for Genesis Mission results
We use ACE/SWICS elemental composition data to compare the variations in
solar wind fractionation as measured by SWICS during the last solar maximum
(1999-2001), the solar minimum (2006-2009) and the period in which the Genesis
spacecraft was collecting solar wind (late 2001 - early 2004). We differentiate
our analysis in terms of solar wind regimes (i.e. originating from interstream
or coronal hole flows, or coronal mass ejecta). Abundances are normalized to
the low-FIP ion magnesium to uncover correlations that are not apparent when
normalizing to high-FIP ions. We find that relative to magnesium, the other
low-FIP elements are measurably fractionated, but the degree of fractionation
does not vary significantly over the solar cycle. For the high-FIP ions,
variation in fractionation over the solar cycle is significant: greatest for
Ne/Mg and C/Mg, less so for O/Mg, and the least for He/Mg. When abundance
ratios are examined as a function of solar wind speed, we find a strong
correlation, with the remarkable observation that the degree of fractionation
follows a mass-dependent trend. We discuss the implications for correcting the
Genesis sample return results to photospheric abundances.Comment: Accepted for publication in Ap
Non-equilibrium Lorentz gas on a curved space
The periodic Lorentz gas with external field and iso-kinetic thermostat is
equivalent, by conformal transformation, to a billiard with expanding
phase-space and slightly distorted scatterers, for which the trajectories are
straight lines. A further time rescaling allows to keep the speed constant in
that new geometry. In the hyperbolic regime, the stationary state of this
billiard is characterized by a phase-space contraction rate, equal to that of
the iso-kinetic Lorentz gas. In contrast to the iso-kinetic Lorentz gas where
phase-space contraction occurs in the bulk, the phase-space contraction rate
here takes place at the periodic boundaries
Non-Volatile Magnonic Logic Circuits Engineering
We propose a concept of magnetic logic circuits engineering, which takes an
advantage of magnetization as a computational state variable and exploits spin
waves for information transmission. The circuits consist of magneto-electric
cells connected via spin wave buses. We present the result of numerical
modeling showing the magneto-electric cell switching as a function of the
amplitude as well as the phase of the spin wave. The phase-dependent switching
makes it possible to engineer logic gates by exploiting spin wave buses as
passive logic elements providing a certain phase-shift to the propagating spin
waves. We present a library of logic gates consisting of magneto-electric cells
and spin wave buses providing 0 or p phase shifts. The utilization of phases in
addition to amplitudes is a powerful tool which let us construct logic circuits
with a fewer number of elements than required for CMOS technology. As an
example, we present the design of the magnonic Full Adder Circuit comprising
only 5 magneto-electric cells. The proposed concept may provide a route to more
functional wave-based logic circuitry with capabilities far beyond the limits
of the traditional transistor-based approach
- …
